Research Progress of Vacuum Laser Welding Technology
- Vol. 53, Issue 4, Pages: 46-55(2023)
DOI: 10.7512/j.issn.1001-2303.2023.04.05
扫 描 看 全 文
扫 描 看 全 文
李想,黄瑞生,滕彬,等.真空激光焊接技术研究进展[J].电焊机,2023,53(4):46-55.
LI Xiang, HUANG Ruisheng, TENG Bin, et al.Research Progress of Vacuum Laser Welding Technology[J].Electric Welding Machine, 2023, 53(4): 46-55.
随着激光器功率的增加,激光传输受等离子体羽辉影响损耗严重,导致激光焊接一次性可穿透深度并非与激光输出功率成正比,焊缝成形稳定性无法可靠保证。而在真空环境下,激光焊接能够展现出不同的工艺特征,能有效抑制等离子体羽辉,增加焊缝熔深,改善熔池稳定性,获得高质量的焊缝。真空激光焊接为实现厚壁构件优质、高效焊接提供了新的工艺方法与研究思路。在综合评述国内外研究成果的基础上,介绍了真空激光焊接技术的发展历史,分析真空环境下激光焊接过程中的焊缝成形、熔池与匙孔、等离子体羽辉特征,梳理了真空激光焊接装备设计和真空激光焊接的相关应用等内容,并对目前该技术研究中存在的问题进行探讨以及对真空激光焊接技术未来发展方向进行展望。
With the increase in laser power, laser transmission is severely affected by plasma plumes, resulting in a one-time penetration depth of laser welding that is not proportional to laser output power, and the stability of weld formation cannot be reliably guaranteed. Research has found that laser welding can show different process characteristics in a vacuum environment, effectively suppressing plasma plumes, increasing weld penetration, improving weld pool stability, and obtaining high-quality welds. This provides a new process method and research idea for achieving high-quality and efficient welding of thick wall components. Based on a comprehensive review of research achievements at home and abroad, the development history of vacuum laser welding technology is introduced, then the characteristics of weld formation, weld pool and keyhole, and plasma plume during laser welding in vacuum environment is analyzed, and then the design of vacuum laser welding equipment and related applications of vacuum laser welding are combed through, the existing problems in the current research of vacuum laser welding technology are discussed and the future development direction of vacuum laser welding technology is prospected.
真空激光焊接熔池匙孔焊接羽辉真空室焊接应用
vacuum laser weldingmolten poolkeyholewelding plumevacuum chamberwelding applications
Matsunawa A. Problems and solutions in deep penetration laser welding[J]. Science and Technology of Welding and Joining, 2001, 6(6): 351-354.
Beck M, Berger P, Hugel H. The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers[J]. Journal of Physics D: Applied Physics, 1995, 28(12): 2430.
Peng Y, Chen W, Wang C, et al. Controlling the plasma of deep penetration laser welding to increase power efficiency[J]. Journal of Physics D: Applied Physics, 2001, 34(21): 3145.
Mai T A, Tay G H, Koh E W, et al. Laser vacuum welding of aluminium, kovar and ni-fe alloys for hermetic incapsulation of electronic components[C]//International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America, 2002, 2002(1): 157914.
Karhu M, Jokinen T, Kujanpää V. Welding experiments using vacuum enviroment with Nd: YAG-laser[C]//International Congress on Applications of Lasers & Electro-Optics. Laser Institute of America, 2003, 2003(1): 1708.
Youhei A, Yousuke K, Hiroshi N, et al. Effect of reduced pressure atmosphere on weld geometry in partial penetration laser welding of stainless steel and aluminium alloy with high power and high brightness laser[J]. Science and Technology of Welding and Joining, 2014, 19(4): 324-332.
Arata Y, Abe N, Oda T. Fundamental phenomena in high power CO2 laser (report II): Vacuum laser welding (welding physics,process & instrument)[J]. Transactions of JWRI, 1985, 14(2): 217-222.
Verwaerde A, Fabbro R, Deshors G. Experimental study of continuous CO2 laser welding at subatmospheric pre-ssures[J]. Journal of applied Physics, 1995, 78(5): 2981-2984.
Hecht J. A short history of laser development[J]. Applied optics, 2010, 49(25): 99-122.
Shi W, Fang Q, Zhu X, et al. Fiber lasers and their applications[J].Applied optics,2014,53(28):6554-6568.
Katayama S, Kobayashi Y, Mizutani M, et al. Effect of vacuum on penetration and defects in laser welding[J]. Journal of Laser Applications, 2001, 13(5): 187-192.
Abe Y, Mizutani M, Kawahito Y, et al. Deep penetration welding with high power laser under vacuum[C]//International Congress on Applications of Lasers & Electro-Optics,Laser Institute of America, 2010: 648-653.
Börner C, Dilger K, Rominger V, et al. Influence of ambient pressure on spattering and weld seam quality in laser beam welding with the solid-state laser[C]//International Congress on Applications of Lasers & Electro-Optics, Laser Institute of America, 2011(1): 621-629.
Richter K, Behr W, Reisgen U. Low heat welding of titanium materials with a pulsed Nd: YAG laser[J]. Materialwissenschaft und Werkstofftechnik, 2007, 38(1): 51-56.
Francis J A, Holtum N, Olschok S, et al. Vacuum laser welding of SA508 steel[J]. Journal of Materials Processing Technology, 2019, 274: 116269.
Senger A, Jokisch T, Olschok S, et al. Hot-cracks reduction during Laser Beam Welding in vacuum of conventionally cast Alloy-247 LC[J]. Procedia CIRP, 2020, 94: 632-637.
Reisgen U, Olschok S, Jakobs S, et al. Influence of the degree of dilution with laser beam vacuum-welded Cu-Al mixed joints on the electrical properties[J]. Procedia Cirp, 2018, 74: 23-26.
Bao H T, Liu J H, Liu K, et al. Effect of vacuum laser welding parameter on AZ31 magnesium alloy penetration and flaw analysing[J]. Applied Laser, 2008, 28(5): 366‒370.
Cai C, Peng G C, Li L Q, et al. Comparative Study on Laser Welding Characteristics of Aluminium Alloy under Atmospheric and Subatmospheric Pressures[J]. Science and Technology of Welding and Joining, 2014, 19(7): 547‒553.
Peng G. Laser welding characteristics of aluminum and nickel-base alloys under vacuum environment[D]. Harbin: Harbin Institute of Technology, 2015: 28‒44
Yang S, Wang J, Carlson B E, et al. Vacuum-assisted laser welding of zinc-coated steels in a gap-free lap joint configuration[J]. Welding Journal, 2013, 92(7): 197‒204.
Lee Y, Cheon J, Min B K,et al. Contamination of coupling glass and performance evaluation of protective system in vacuum laser beam welding[J]. Applied Sciences, 2019, 9(23): 5082.
Reisgen U, Olschok S, Jakobs S, et al. Laser beam welding under vacuum of high grade materials[J]. Welding in the World, 2016, 60(3): 403-413.
Elmer J W, Vaja J, Carleton H D. The effect of reduced pressure on laser keyhole weld porosity and weld geometry in commercially pure titanium and nickel[J]. Welding Journal, 2016, 95: 691153.
Jakobs S, Reisgen U. Laser Beam Welding under reduced pressure-Range of possible applications for thick-plates[J]. Stahlbau, 2015, 84(9): 635-642.
Jiang M, Chen X, Chen Y, et al. Mitigation of porosity defects in fiber laser welding under low vacuum[J]. Journal of Materials Processing Technology,2020,276:116385.
Katayama S, Abe Y, Mizutani M, et al. Deep penetration welding with high-power laser under vacuum[J]. Transactions of JWRI, 2011, 40(1): 15‒19.
Han X, Tang X, Wang T, et al. Role of ambient pressure in keyhole dynamics based on beam transmission path method for laser welding on Al alloy[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99: 1639-1651.
罗燕. 负压激光焊接过程蒸气羽烟及熔池行为研究[D].上海:上海交通大学,2015.
LUO Y. Study on the behavior of vapor plume and weld pool during negative pressure laser welding [D]. Shanghai:Shanghai Jiaotong University, 2015.
Pang S Y, Hirano K, Fabbro R, et al. Explanation of penetration depth variation during laser welding under variable ambient pressure[J]. Journal of Laser Applications, 2015, 27(2): 022007.
Pang S Y, Chen X, Zhou J X, et al. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect[J]. Optics and Lasers in Engineering, 2015, 74: 47‒58.
Gong J, Peng G, Li L, et al. Effect of plasma plume produced by vacuum laser welding on energy transmission[J]. Optics & Laser Technology, 2021, 136: 106744.
Jiang M, Tao W, Wang S, et al. Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding[J]. Vacuum, 2017, 138: 70-79.
姜梦. 真空环境下激光焊接等离子体特性研究[D].黑龙江:哈尔工业大学, 2015.
JIANG M. Study on Plasma Characteristics of Laser Welding in Vacuum Environment[D]. Heilongjiang: Harbin University of Technology, 2015.
姜梦,陶汪,陈彦宾,等. 真空激光焊接焊缝成形及等离子体特征[J].中国激光,2016,43(04):124-129.
JIANG M, TAO W, CHEN Y B, et al. Vacuum laser welding seam formation and plasma characteristics[J]. China Laser, 2016,43(04): 124-129.
Luo Y, Tang X, Lu F. Experimental study on deep penetrated laser welding under local subatmospheric pressure[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73: 699-706.
Reisgen U, Olschok S, Jakobs S, et al. Welding with the Laser Beam in Vacuum[J]. Laser Technik Journal, 2015, 12(2): 42-46.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关作者
相关机构