Effect of Ultrasonic Impact Treatment on the Microstructure of Low Carbon Steel Fabricated by Wire and Arc Additive Manufacturing
- Vol. 53, Issue 2, Pages: 117-124(2023)
DOI: 10.7512/j.issn.1001-2303.2023.02.12
扫 描 看 全 文
扫 描 看 全 文
孙徕博,黄瑞生,武鹏博,等.超声冲击对电弧熔丝增材制造低碳钢组织的影响[J].电焊机,2023,53(2):117-124.
SUN Laibo, HUANG Ruisheng, WU Pengbo, et al.Effect of Ultrasonic Impact Treatment on the Microstructure of Low Carbon Steel Fabricated by Wire and Arc Additive Manufacturing[J].Electric Welding Machine, 2023, 53(2): 117-124.
电弧熔丝增材制造低碳高强钢过程中产生的组织粗大和各向异性等问题一定程度上限制了该技术的应用和发展。在电弧熔丝增材制造过程中引入层间超声冲击处理,以改善制件的组织状态和各向异性,采用光学显微镜和扫描电子显微镜等手段对超声冲击前、后的组织状态进行了对比。结果表明,经过超声冲击处理后,具有明显方向性的典型柱状晶组织转变为均匀、细小的等轴晶组织;电子背散射衍射结果表明,超声冲击强化可改善组织的方向性并大幅细化晶粒。这是因为超声可以打破组织内部对位错运动的限制,促进位错合并和湮灭,进而形成大量亚结构,并在后续沉积层的热效应作用下发生部分再结晶。这种转变会阻碍柱状组织的生长,并将柱状组织分成具有小纵横比的胞状或等轴状组织。
The problems of coarse microstructure and anisotropy arising from the process of wire and arc additive manufacturing (WAAM) of low-carbon high-strength steel have limited the application and development of this technology to a certain extent. In this paper, the introduction of inter-layer ultrasonic impact treatment (UIT) in the WAAM process can effectively improve the microstructure state and anisotropy. The microstructure states of depositions without and with UIT are compared by optical microscope and scanning electron microscope. The results showe that the typical columnar treatment with obvious directionality was transformed into a uniform and fine equiaxed microstructure after UIT. The electron backscatter diffraction results showe that UIT strengthening can substantially improve the microstructure directionality and refine the grains. This is because UIT can break the restriction on dislocation movement within the microstructure and promote dislocation merging and annihilation, which leds to the formation of a large number of substructures and partial recrystallization under the thermal effect of subsequently deposited layers. This transformation hinders the growth of columnar microstructure and divides them into cellular or equiaxed microstructure with small aspect ratios.
电弧熔丝增材制造超声冲击处理低碳高强钢组织特征
wire and arc additive manufacturingultrasonic impact treatmentlow carbon higt strength steelmicrostructure characteristic
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4.
LU B H, LI D C. Development of the Additive Manufacturing (3D printing) Technology[J]. Machine Building and Automation, 2013, 42(4): 1-4.
张兆栋, 何胜斌, 王奇鹏, 等. 电弧增材制造工艺方法、增材焊料及后处理的研究现状[J]. 电焊机, 2021, 51(8): 1-10.
ZHANG Z D, HE S B, WANG Q P, et al. Research status of process method, additive solder and post-processing in arc additive manufacturing[J]. Electric Welding Machine, 2021, 51(8): 1-10.
Ding D H, Pan Z X, Cuiuri D, et al. Wire-feed additive manufacturing of metal components: technologies, developments and future interests[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81: 465-481.
邸艳艳, 胡仁志, 熊逸博, 等. 电弧熔丝增材制造316L的温度场仿真及对基体的影响[J]. 电焊机, 2022, 52(1): 63-67.
DI Y Y, HU R Z, XIONG Y B, et al. Temperature Field Simulation and the Effect on the Substrate During Wire Arc Additive Manufacturing of 316L[J]. Electric Welding Machine, 2022, 52(1): 63-67.
Chi J X, Cai Z Y, Wan Z D, et al. Effects of heat treatment combined with laser shock peening on wire and arc additive manufactured Ti17 titanium alloy: Microstructures, residual stress and mechanical properties[J]. Surface & Coatings Technology,2020,396:125908.
Hönnige J R, Davis A E, Ho A, et al. The Effectiveness of Grain Refinement by Machine Hammer Peening in High Deposition Rate Wire-Arc AM Ti-6Al-4V[J]. Metallurgical and Materials Transactions A, 2020, 51A: 3692-3703.
Colegrove P A, Coules H E, Fairman J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pres-sure rolling[J]. Journal of Materials Processing Technology, 2013, 213: 1782-1791.
Laibo Sun, Fengchun Jiang, Ruisheng Huang, et al. Anisotropic mechanical properties and deformation behavior of low-carbon high-strength steel component fabricated by wire and arc additive manufacturing[J]. Materials Science & Engineering A, 2020, 787, 139514.
Manogharan G, Yelamanchi B, Aman R, et al. Experimental Study of Disruption of Columnar Grains During Rapid Solidification in Additive Manufacturing[J]. JOM, 2016, 68(3): 842-849.
Luo X T, Yao M L, Ma N, et al. Deposition behavior, microstructure and mechanical properties of an in-situ micro-forging assisted cold spray enabled additively manufactured Inconel 718 alloy[J]. Materials and Design, 2018, 155: 384-395.
Yang Y C, Jin X, Liu C M, et al. Residual Stress, Mechanical Properties, and Grain Morphology of Ti-6Al-4V Alloy Produced by Ultrasonic Impact Treatment Assisted Wire and Arc Additive Manufacturing[J]. Metals, 2018, 8: 934.
何智. 超声冲击电弧增材制造钛合金零件的组织性能研究[D]. 湖北:华中科技大学, 2016.
HE Z. Effect of Ultrasonic Impact on the Properties of Arc Additive Manufacturing of Titanium alloy[D]. Hubei: Huazhong University of Science & Technology, 2016.
Diao M X, Guo C H, Sun Q F, et al. Improving mechanical properties of austenitic stainless steel by the grain refinement in wire and arc additive manufacturing assisted with ultrasonic impact treatment[J]. Materials Science & Engineering A, 2022, 857, 144044.
苏艳. 超声冲击对电弧熔丝HS321不锈钢沉积层组织及残余应力的影响[D]. 黑龙江:哈尔滨工程大学, 2019.
SU Y. Effect of Ultrasonic Impact on Microstructure and Residual Stress of HS321 Stainless Steel Deposited Layer by WAAM[D]. Heilongjiang: Harbin Engineering University, 2019.
McAndrew A R, Rosales M A, Colegrove P A, et al. Pinter. Interpass rolling of Ti-6Al-4V wire+arc additively manufactured features for microstructural refinement[J]. Additive manufacturing, 2018, 21: 340-349.
Arnab Sarkar, Souriddha Sanyal, Tapas K Bandyopadhyay, et al. Implications of microstructure, Taylor factor distribution and texture on tensile properties in a Ti-added Fe-Mn-Al-Si-C steel[J]. Materials Science & Engineering A, 2019, 767: 138402.
Long Weimin, Lu Quanbin, Zhong Sujuan, et al. Research on interface structure and performance of diamond brazed coating[J]. Welding in the World, 2022, 66(5): 1043-1052.
Lu Quanbin, Long Weimin, Zhong Sujuan, et al. TZM graphite interface behavior in high-temperature brazing by Ti[J]. Welding in the World, 2020, 64: 1877-1885.
Yang Z, Zhu L, Ning J, Wang S, et al. Revealing the influence of ultrasound/heat treatment on microstructure evolution and tensile failure behavior in 3D-printing of Inconel 718[J]. Journal of Materials Processing Technology, 2022, 305: 117574.
Laibo Sun, Chunhuan Guo, Lujun Huang, et al. Effect and mechanism of inter-layer ultrasonic impact strengthening on the anisotropy of low carbon steel components fabricated by wire and arc additive manufacturing[J]. Materials Science & Engineering A, 2022, 848: 143382.
相关文章
相关作者
相关机构