Research Progress of Metal Lattice Structure Based on Wire Arc Additive Manufacturing
- Vol. 53, Issue 2, Pages: 76-86(2023)
DOI: 10.7512/j.issn.1001-2303.2023.02.07
扫 描 看 全 文
扫 描 看 全 文
徐田秋,敬晨晨,毛昊,等.电弧增材制造金属点阵结构研究进展[J].电焊机,2023,53(2):76-86.
XU Tianqiu, JING Chenchen, MAO Hao, et al.Research Progress of Metal Lattice Structure Based on Wire ArcAdditive Manufacturing[J].Electric Welding Machine, 2023, 53(2): 76-86.
金属点阵结构是一种轻质多功能结构,具有高比强度、高比刚度、抗爆吸能、减振降噪等优势,在飞行器、船舶、车辆、建筑等领域具有广泛的应用前景。然而,迄今为止点阵结构件的应用规模仍然十分有限,主要原因是受到制造技术的严重制约。电弧增材制造技术因其离散堆积的成形特点有望实现点阵复杂结构的一体化高效低成本制造。综合分析了电弧增材制造金属空间杆结构与点阵结构的研究现状,从制造原理、成形工艺与方法、制造特点等方面进行论述,并归纳了现阶段各研究机构对于金属点阵电弧增材制造的研究进展。最后介绍了电弧增材造金属点阵结构存在的掣肘,重点分析了现有电弧增材制造在点阵制造与成形控制方面的研究进展与不足,指出了未来电弧增材制造金属点阵结构的主要发展方向。
Metal lattice structure is a kind of lightweight multifunctional structure, which has the advantages of high specific strength, high specific stiffness, anti-explosion, energy absorption, vibration reduction and noise reduction. It has a broad application prospect in aircraft, ships, vehicles, buildings, and other fields. However, up to now, the application scale of lattice structure is still very limited, mainly due to the serious constraints of manufacturing technology. Wire arc additive manufacturing is expected to realize the integrated, efficient, and low-cost manufacturing of complex lattice structures due to its characteristics. This paper comprehensively analyzed the current research situation of metal spatial rod and lattice structure fabricated by wire arc additive manufacturing, discussed the manufacturing principle, forming process, method, manufacturing characteristics and other aspects, and summarizes the research progress and process characteristics of current research institutions for metal lattice based on wire arc additive manufacturing. At last, introduced the limitations of metal lattice structure made by wire arc additive manufacturing. The research progress and deficiency of current wire arc additive manufacturing in lattice manufacturing and forming control are emphatically analyzed, and the main development direction of wire arc additive manufacturing metal lattice structure in the future is proposed.
电弧增材制造点阵结构成形工艺空间杆结构
wire arc additive manufacturinglattice structuredeposition processspatial rod structure
Scalzo F, Totis G, Vaglio E, et al. Experimental study on the high-damping properties of metallic lattice structures obtained from SLM[J]. Precision Engineering, 2021, 71: 63-77.
Ge J, Huang J, Lei Y, et al. Microstructural features and compressive properties of SLM Ti6Al4V lattice structures[J]. Surface and Coatings Technology, 2020, 403: 126419.
Maconachie T, Leary M, Lozanovski B, et al. SLM lattice structures: Properties, performance, applications and challenges[J]. Materials & Design, 2019, 183: 108137.
Li H, Hu Y, Huang H, et al. Broadband low-frequency vibration attenuation in 3D printed composite meta-lattice sandwich structures[J]. Composites Part B: Engineering, 2021, 215: 108772.
Xiao M, Liu X, Zhang Y, et al. Design of graded lattice sandwich structures by multiscale topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 384: 113949.
Zhang Y, Li Z, Xu K, et al. A lattice sandwich structure with the active variable stiffness device under aerodynamical condition[J]. Aerospace Science and Technology, 2021, 116: 106849.
Wang X, Zeng T, Xu G, et al. Predicting the equivalent thermal conductivity of pyramidal lattice core sandwich structures based on Monte Carlo model[J]. Int-ernational Journal of Thermal Sciences, 2021, 161: 106701.
王华明. 高性能大型金属构件激光增材制造:若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
WANG H M. Materials' Fundamental Issues of Laser Additive Manufacturing for High-performance Large Metallic Components[J]. Acta Aeronautica et Astronautica Sinica,2014, 35(10): 2690-2698.
卢秉恒,李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(04): 1-4.
LU B H,LI D C. Development of the Additive Manufacturing(3D printing)Technology[J]. Machine Building & Automation, 2013, 42(04): 1-4.
田彩兰,陈济轮,董鹏,等. 国外电弧增材制造技术的研究现状及展望[J]. 航天制造技术, 2015(02): 57-60.
TIAN C L,CHEN J L,DONG P,et al. Current State and Future Development of the Wire Arc Additive Manufacture Technology Abroad[J]. Aerospace Manufacturing Technology,2015(02): 57-60.
赵剑峰,马智勇,谢德巧, 等. 金属增材制造技术[J]. 南京航空航天大学学报, 2014, 46(05): 675-683.
ZHAO J F,MA Z Y,XIE D Q,et al. Metal Additive Manufacturing Technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(05): 675-683.
巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术,2013(13): 66-71.
GONG S L,SUO H B,LI H X. Development and Application of Metal Additive Manufacturing Technology[J]. Aeronautical Manufacturing Technology,2013(13): 66-71.
Mazur M, Leary M, Sun S, et al. Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM)[J]. The International Journal of Advanced Manufacturing Technology, 2016,84(5):1391-1411.
Zhang X Z, Leary M, Tang H P, et al. Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges[J]. Current Opinion in Solid State and Materials Science, 2018, 22(3): 75-99.
刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20): 128-151,159.
LIU W,LI N,ZHOU B,et al. Progress in Additive Manufacturing on Complex Structures and High-performance Materials[J]. Journal of Mechanical Engineering,2019,55(20): 128-151,159.
耿海滨, 熊江涛, 黄丹, 等. 丝材电弧增材制造技术研究现状与趋势[J]. 焊接, 2015(11): 17-21,69.
GENG H B,XIONG J T,HUANG D,et al. Research status and trends of wire and arc additive manufacturing technology[J]. Welding & Joining, 2015(11): 17-21,69.
Radel S, Bordreuil C, Soulié F, et al. CAM for On-line Control for Wire Arc Additive Manufacturing[J], 2019, 16(3): 558-569.
Radel S, Diourte A, Soulié F, et al. Skeleton arc additive manufacturing with closed loop control[J]. Additive Manufacturing, 2019, 26: 106-116.
Ye J, Kyvelou P, Gilardi F, et al. An End-to-End Framework for the Additive Manufacture of Optimized Tubular Structures[J]. IEEE Access, 2021,9: 165476-165489.
Ariza I. Design and assembly of light weight metal structures[R]. 2018.
Silvestru V-A, Ariza I, Vienne J, et al. Performance under tensile loading of point-by-point wire and arc additively manufactured steel bars for structural components[J]. Materials & Design, 2021, 205:109740.
Laghi V, Palermo M, Gasparini G, et al. Experimental results for structural design of Wire-and-Arc Additive Manufactured stainless steel members[J]. Journal of Constructional Steel Research, 2020, 167:105858.
Laghi V, Palermo M, Gasparini G, et al. Computational design and manufacturing of a half-scaled 3D-printed stainless steel diagrid column[J]. Additive Manufacturing, 2020, 36:101505.
Wang T, Zhou X, Zhang H. Control of forming process of truss structure based on cold metal transition technology[J]. Rapid Prototyping Journal, 2021, 28(2): 204-215.
Wu B, Pan Z, Ziping Y, et al. Robotic skeleton arc additive manufacturing of aluminium alloy[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(9-10): 2945-2959.
Yu Z, Pan Z, Ding D, et al. A practical fabrication strategy for wire arc additive manufacturing of metallic parts with wire structures[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(9-10): 3197-3212.
Xu T, Cui Y, Ma S, et al. Exploring the inclined angle limit of fabricating unsupported rods structures by pulse hot-wire arc additive manufacturing[J]. Journal of Materials Processing Technology,2021,295:117160.
Xu T, Tang S, Liu C, et al. Obtaining large-size pyramidal lattice cell structures by pulse wire arc additive manufacturing[J]. Materials & Design, 2020, 187:108401.
Zhang H, Huang J, Liu C, et al. Fabricating Pyramidal Lattice Structures of 304 L Stainless Steel by Wire Arc Additive Manufacturing[J]. Materials (Basel), 2020, 13(16):3482.
Li Y, Yu S, Chen Y, et al. Wire and arc additive manufacturing of aluminum alloy lattice structure[J]. Journal of Manufacturing Processes, 2020, 50: 510-519.
Yu Z, Ding D, Pan Z, et al. A strut-based process planning method for wire arc additive manufacturing of lattice structures[J]. Journal of Manufacturing Processes, 2021, 65: 283-298.
Yu Z, Pan Z, Ding D, et al. Strut formation control and processing time optimization for wire arc additive manufacturing of lattice structures[J]. Journal of Manufacturing Processes, 2022, 79: 962-974.
Abe T, Sasahara H. Layer geometry control for the fabrication of lattice structures by wire and arc additive manufacturing[J]. Additive Manufacturing, 2019, 28: 639-648.
相关文章
相关作者
相关机构