Study on Properties and Microstructures of Large Thickness TC4 Titanium Alloy Welded Joint by Ultra-Narrow Gap Laser Welding Using Filler Wire
- Vol. 52, Issue 6, Pages: 25-34(2022)
DOI: 10.7512/j.issn.1001-2303.2022.06.03
扫 描 看 全 文
扫 描 看 全 文
方乃文,黄瑞生,谢吉林,等.大厚度TC4钛合金超窄间隙激光填丝焊接头组织性能研究[J].电焊机,2022,52(6):25-34.
FANG Naiwen, HUANG Ruisheng, XIE Jilin, et al.Study on properties and microstructures of large thickness TC4 titanium alloy welded joint by ultra-narrow gap laser welding using filler wire[J].Electric Welding Machine, 2022, 52(6): 25-34.
采用激光填丝焊接方法进行96 mm厚TC4钛合金板超窄间隙焊接,并对焊接接头进行了组织和性能分析。研究发现:焊缝整体呈钉形,没有出现气孔、裂纹及侧壁未熔合等焊接缺陷;焊缝区域主要由大量细长针状α'马氏体相互交织构成;焊接接头上中下3部分热影响区宽度、焊缝区域中α'马氏体板条宽度和位错密度呈递减趋势;焊接接头下部焊缝区域的α'马氏体晶界取向差在55°~65°的大角度晶界分布较中部和上部焊缝区域组织中略少一些;上中下3部分焊接接头中的焊缝区域显微硬度均明显高于热影响区和母材;沿壁厚方向焊接接头的抗拉强度与母材相当,焊接接头断裂位置均位于硬度值较高的焊缝处;最大局部应变出现在焊接接头下部中靠近母材的焊缝区域,局部应变值达到26.3%,而最小的局部应变值出现在焊接接头上部靠近母材的焊缝区,局部应变值约为14.5%。
TC4 titanium alloy plate with a thickness of 96 mm was joined through ultra-narrow gap laser welding using filler wire. Microstructures as well as properties of the joint were investigated. It was found that the appearance of the weld was like a nail, and welding defects including porosity, crack and incomplete fusion were not observed; weld zones in the upper, center and lower parts of the welded joint mainly consisted of a great deal of elongated acicular and interlaced α' phases; width of heat affected zones in the three parts of welded joint, width of α' martensite laths, and dislocation density of weld zones were decreased; α' phase grain boundary misorientation was less in high-angle grain boundaries of 55°~65°in lower the part of the welded joint than that in the center and upper parts. The microhardness of the upper, middle and lower parts of the welded joint is obviously higher than that of the heat affected zone and the base metal, and the tensile strength of the welded joint is similar to that of the base metal, the fracture of the welded joint occurred at the weld with higher hardness value, and the maximum local strain appeared in the lower part of the welded joint near the base metal, the local strain reached 26.3%, while the minimum local strain appears in the upper part of the welded joint near the base metal, and The local strain is about 14.5%.
大厚度钛合金激光填丝焊超窄间隙焊接组织性能
large thicknesstitanium alloylaser welding using filler wireultra-narrow gap weldingproperties and microstructures
LIU J, ALFANTAZI A, ASSELIN E. A new method to improve the corrosion resistance of titanium for hydrometallurgical applications[J]. Applied Surface Science, 2015, 332: 480-487.
房卫萍, 肖铁, 张宇鹏, 等. 超厚板TC4钛合金电子束焊接接头应力腐蚀敏感性[J]. 焊接学报, 2019, 40(12): 121-128.
FANG Weiping,XIAO Tie,ZHANG Yupeng,et al. Stress corrosion crack sensitivity of ultra-thick TC4 titanium alloy electron beam welding joints[J]. Transactions of the China Welding Institution, 2019, 40(12): 121-128.
FANG N W, GUO E J, HUANG R S, et al. Effect of welding heat input on microstructure and properties of TC4 titanium alloy ultra-narrow gap welded joint by laser welding with filler wire[J]. Materials Research Express, 2020. 8(1):016511.
徐楷昕, 雷振, 黄瑞生, 等. 摆动工艺对钛合金窄间隙激光填丝焊缝成形及气孔率的影响[J]. 中国激光, 2021, 534(06): 143-151.
Xu Kaixin,Lei Zhen,Huang Ruisheng,et al. Effects of Oscillation Parameters on Weld Formation and Porosity of Titanium Alloy Narrow-Gap Laser Wire Filling Welding[J]. Chinese Journal of Lasers, 2021, 534(06): 143-151.
FANG N W, GUO E J, XU K, et al. In-situ observation of grain growth and phase transformation in weld zone of Ti-6Al-4V titanium alloy by laser welding with filler wire[J]. Materials Research Express, 2021, 8(5): 056507.
YANG T, DU X, CHEN W, et al. Microstructure evolution and deformation resistance of heavy-thickness Ti-6Al-4V narrow-gap welded joints[J]. Materials Letters, 2019, 250: 116-118.
余陈, 张宇鹏, 房卫萍, 等. 焊后热处理对100 mm TC4钛合金电子束焊接头残余应力的影响[J]. 材料热处理学报, 2018, 39(07): 151-155.
YU Chen,ZHANG Yupeng,FANG Weiping,et al. Effect of post welding heat treatment on residual stress of 100 mm TC4 Ti-alloy welded joint by electron beam welding[J]. Transactions of Materials and Heat Treatment, 2018, 39(07): 151-155.
GONG Y, WANG S, JUAN L I, et al. Microstructure evolution of thick TC4 titanium alloy vacuum electron beam welded joint[J]. Transactions of the China Welding Institution, 2017, 38(9): 91-96.
李俐群, 张亮, 戴景明. 激光填丝多层焊温度场和应力场的数值模拟[J]. 中国激光,2011, 38(10): 47-51.
LI Liqun,ZHANG Liang,DAI Jingming. Numerical Simulation of Temperature and Stress Fields in Wire Filling Laser Multilayer Welding[J]. Chinese Journal of Lasers, 2011, 38(10): 47-51.
方乃文, 郭二军, 徐锴, 等. 钛合金激光填丝焊缝晶粒生长及相变原位观察[J/OL].中国有色金属学报:1-10[2022-06-21].
FANG Naiwen,GUO Erjun,XU Kai,et al. In-situ observation of grain growth and phase transformation in laser welding of titanium alloy with filler wire[J/OL]. The Chinese Journal of Nonferrous Metals:1-10[2022-06-21].
方乃文, 黄瑞生, 徐锴, 等. 一种TC4钛合金药芯焊丝及其制备方法[P]. 中国:CN112404798A,2021-02-26.
方乃文, 徐锴, 黄瑞生, 等. 一种大厚度钛合金板窄间隙激光填丝焊接用气体保护装置[P]. 中国:CN212946025U,2021-04-13.
虞鸿江, 范如意, 黄坚, 等. TC11高强钛合金激光焊接接头的显微组织与力学性能[J]. 中国有色金属学报, 2015, 25(01): 1-8.
YU Hongjiang,FAN Ruyi,HUANG Jian,et al. Microstructure and mechanical properties of high-strength TC11 titanium alloy joints welded by laser beam[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(01): 1-8.
籍龙波, 胡树兵, 李行志, 等. 电子束焊接Ti-6Al-4V合金接头的疲劳裂纹尖端微区形态[J]. 中国有色金属学报, 2011, 21(01): 102-109.
JI Longbo,HU Shubing,LI Xingzhi,et al. Morphologies at fatigue crack tip of Ti-6Al-4V electron beam welding joints[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(01): 102-109.
ZHANG M, JIA F, CHENG K, et al. Influence of quenching and tempering on microstructure and properties of welded joints of G520 martensitic steel[J]. Acta Metallurgica Sinica, 2019, 55(11):1379-1387.
XU P Q, LI L, ZHANG C. Microstructure characterization of laser welded Ti-6Al-4V fusion zones[J]. Materials Characterization, 2014, 87: 179-185.
PANDY C, MAHAPATRA M M, Kumar P, et al. Softening mechanism of P91 steel weldments using heat treatments[J]. Archives of Civil and Mechanical Engineering, 2019, 19(2): 297-310.
吴巍, 程广福, 高洪明, 等. TC4合金TIG焊接头组织转变与力学性能分析[J]. 焊接学报, 2009, 30(07): 81-84.
WU Wei,CHENG Guangfu,GAO Hongming,et al. Microstructure transformation and mechanical properties of TC4 alloy joints welded by TIG[J]. Transactions of the China Welding Institution, 2009, 30(07): 81-84.
张敏, 贾芳, 程康康, 等. 调质处理对G520钢焊接接头组织及性能的影响[J]. 金属学报, 2019, 55(11): 1379-1387.
ZHANG Min,JIA Fang,CHENG Kangkang,et al. Influence of Quenching and Tempering on Microstructure and Properties of Welded Joints of G520 Martensitic Steel[J]. Acta Metallurgica Sinica, 2019, 55(11): 1379-1387.
FANG N W, GUO E J, XU K, et al. Effect of Shielding Gas on the Microstructure and Mechanical Properties of TC4 Titanium Alloy Ultra-narrow Gap Welded Joint by Laser Welding with Filler Wire[J]. Advances in Materials Science and Engineering,2021:9582421.
TARZIMOGHADAM Z, SANDLBES S, PRADEEP K G, et al. Microstructure design and mechanical properties in a near-αTi-4Mo alloy[J]. Acta Materialia, 2015(97):291-304.
WU K. C. Correlation of properties and microstructure in welded Ti-6Al-6V-2Sn[J]. Welding Journal, 1981, 60(11): 219.
J T Philip, J Mathew, B Kuriachen. Tribology of Ti6Al4V:A review[J]. Friction, 2019, 7(6):497-536.
CUI C Y, CUI X G, REN X D, et al. Microstructure and microhardness of fiber laser butt welded joint of stainless steel plates[J]. Materials & Design, 2013, 49(08): 761-765.
SHARMA H, VAN BOHEMEN S M, Petrov R H, et al. Three-dimensional analysis of microstructures in titanium[J]. Acta Materialia, 2010,58(07):2399-2407.
陆莹, 乔红超, 曲楠, 等. 钛合金焊缝组织循环热处理及球化过程分析[J]. 稀有金属材料与工程, 2019, 48(1): 254-262.
Lu Ying,Qiao Hongchao,Qu Nan,et al. Cyclic Heat Treatment and Spheroidizing Mechanism of Titanium Alloy Welding Microstructure[J]. Rare Metal Materials and Engineering, 2019, 48(1): 254-262.
相关文章
相关作者
相关机构