Application and Research Status of Inertia Friction Welding in Commercial Aeroengine
- Vol. 52, Issue 5, Pages: 91-98(2022)
DOI: 10.7512/j.issn.1001-2303.2022.05.13
扫 描 看 全 文
扫 描 看 全 文
张露,韩秀峰,阮雪茜.惯性摩擦焊在商用航空发动机中的应用与研究现状[J].电焊机,2022,52(5):91-98.
ZHANG Lu, HAN Xiufeng, RUAN Xueqian.Application and Research Status of Inertia Friction Welding inCommercial Aeroengine[J].Electric Welding Machine, 2022, 52(5): 91-98.
惯性摩擦焊作为一种典型固相焊接工艺,因其优异的焊接工艺性能,已广泛应用于国外先进航空发动机的风扇、压气机及涡轮等核心转动部件的焊接制造,代替了原始的螺栓连接结构,有效降低了制造成本,并减轻了发动机质量,提高了推重比。目前,国内外学者针对航空发动机用钛合金、高温合金及粉末高温合金的惯性摩擦焊接工艺和数值模拟等技术进行了一系列研究,通过分析总结国内外研究和应用现状,指出国内外在惯性摩擦焊技术方面的差距,以推动国内加快惯性摩擦焊接技术的研究工作,提升惯性摩擦焊接技术研究水平,支撑先进航空发动机的研制。
Inertia friction welding,as a typical solid phase welding process, has been used more often in welding fan, compressor and turbine rotating components of foreign advanced aircraft engine because of excellent welding performance. It replaces the original bolted structure, effectively reduces the manufacturing cost, reduces the engine weight and improves the thrust-to-weight ratio. At present, the foreign and domestic scholars research the inertia friction welding process and numerical simulation of aircraft engine with titanium alloy, high temperature alloy and powder metallurgy superalloy. The gap of inertia friction welding technology is pointed out by analyzing and summaring the research and application status at foreign and domestic. It will promote the domestic research work of inertial friction welding technology, improve the research level of inertial friction welding technology, and support the development of advanced aero-engine.
惯性摩擦焊商用航空发动机钛合金高温合金差距
inertia friction weldingcommercial aircraft enginetitanium alloyhigh temperature alloydisparity
Wu Y Q, Zhang C B, Zhou J, et al. Analysis of the Microstructure and Mechanical Properties during Inertia Friction Welding of the Near-α TA19 Titanium Alloy[J]. Chinese Journal of Mechanical Engineering, 2020,33(6):13.
Xu X, You G, Ding Y, et al. Microstructure and mechanical properties of inertia friction welded joints between high-strength low-alloy steel and medium carbon steel[J]. Journal of Materials Processing Technology, 2020, 286:116811.
文恒玉, 李佩琪, 丁煜瀚. 惯性摩擦焊研究现状[J]. 热加工工艺, 2018, 48(19): 6-11.
Wen Hengyu, Li Peiqi, Ding Yuhan. Research Status of Inertia Friction Welding[J]. Hot Working Technology, 2018, 48(19): 6-11.
赵强, 祝文卉, 邵天巍, 等. 惯性摩擦焊在航空发动机转子制造中的应用[J]. 航空动力, 2019(5): 41-44.
Zhao Qiang, Zhu Wenhui, Shao Tianwei, et al. Electron Beam Application of Inertia Friction Welding in Engine Rotor Manufacturing[J]. Aerospace Power, 2019(5): 41-44.
张露, 韩秀峰, 王伦. 商用航空发动机盘轴类转动件焊接工艺分析[J]. 航空制造技术, 2015(11):96-98.
Zhang Lu, Han Xiufeng, Wang Lun. Analysis of Welding Process in Disk and Shaft Rotor Components of Commercial Aircraft Engines[J]. Aeronautical Manufacturing Technology, 2015(11):96-98.
韩秀峰, 张露, 钱凌翼. 固态焊接在民用航空发动机中的应用[J]. 航空制造技术, 2012(13):55-58.
Han Xiufeng, Zhang Lu, Qian Lingyi. Application of Solid State Welding in Civil Aircraft Engine[J]. Aeronautical Manufacturing Technology. 2012(13):55-58.
Wang G, Chen Z, Li J, et al. Microstructure and Mechanical Properties of Inertia and Electron Beam Welded Ti-6246[J]. Journal of Materials Science & Technology, 2016, 34(3): 1-16.
于广娜, 吴素君, 何胜春, 等. TC17合金焊接接头显微组织与疲劳裂纹扩展特性[J]. 宇航材料工艺, 2010(6):81-85.
Yu Guangna, Wu Sujun, He Shengchun, et al. Microstructure and Fatigue Crack Growth Characteristics of Welded Joints of TC17 Titanium Alloy[J]. Aerospace Materials & Technology, 2010(6):81-85.
黄嘉, 季英萍, 秦丽晔, 等. GH4169合金惯性摩擦焊焊接接头疲劳裂纹扩展性能[J]. 航空材料学报, 2013, 33(6):45-50.
Huang Jia, Ji Yingping, Qin Liye, et al. Fatigue Crack Growth Behavior of Inertia Friction Welded Joints of GH4169 Alloy[J]. Journal of Aeronautical Material, 2013, 33(6):45-50.
Preuss M, Withers P J, Baxter G J. A comparison of inertia friction welds in three nickel base superalloys[J]. Material Science and Engineering A, 2006,437: 38-45.
何胜春, 张田仓, 郭德伦. 粉末高温合金FGH96惯性摩擦焊接头常温力学性能分析[J]. 航空材料学报, 2006, 26(3):122-125.
He Shengchun, Zhang Tiancang, Guo Delun. Normal Mechanical Property Analysis of P/M Superalloy FGH96 Inertia Friction Welding Joint[J]. Journal of Aeronautical Material, 2006,26(3):122-125.
何胜春, 廖云建, 张田仓, 等. 粉末高温合金FGH96惯性摩擦焊接头室温疲劳裂纹扩展速率测试与分析[J]. 航空制造技术, 2015(11) :77-79.
He Shengchun, Liao Yunjian, Zhang Tiancang, et al. Testing and Analysis of Rate of Fatigue Crack Propagation of P/M Superalloy FGH96 Inertia Friction Welding Joint[J]. Aeronautical Manufacturing Technology, 2015(11) :77-79.
Huang Z W, Li H Y, Preuss M, et al. Inertia friction welding dissimilar nickel-based superalloys alloy 720Li to IN718[J]. Metallurgical and Material Transactions A, 2007,7(38A): 1608-1620.
Roder O, Helm D, Neft S, et al. Mixed Inconel Alloy 718 Inertia Welds for Rotating Applications-Microstru-ctures and Mechanical Properties[C]. The Minerals, Metal & Materials Society, 2005.
Li H Y, Huang Z W, Bray S, et al. High temperature fatigue of friction welded joints in dissimilar nickel based superalloys[J]. Material Science and Technology, 2007, 23(12): 1408-1418.
Daus F, Li H Y, Baxter G,et al. Mechanical and microstructural assessments of RR1000 to IN718 inertia welds-effects of welding parameters[J]. Material Science and Technology, 2007, 23(12): 1424-1432.
王彬, 黄继华, 张田仓, 等. FGH96/GH4169 高温合金惯性摩擦焊微观组织及演变过程[J]. 航空制造技术, 2015(11) :83-86.
Wang Bin, Huang Jihua, Zhang Tiancang, et al. Microstructure and Evolution Process During Inertia Friction Welding of FGH96/GH4169 Superalloy[J]. Aeronautical Manufacturing Technology,2015(11) :83-86.
Wang L, Preuss M, Withers P J, et al. Energy Input Based Finite-Element Process Modelingof Inertia Welding[J]. Metallurgical and Materials Transactions B, 2005(36B): 513-523.
Grant B, Preuss M, Withers P J,et al. Finite element process modelling of inertia friction welding advanced nickel-based superalloy[J]. Materials Science and Engineering A, 2009(513-514) :366-375.
朱海, 王佳, 朱光逸, 等. 惯性摩擦焊接工艺参数对焊接过程影响的数值模拟研究[J]. 热加工工艺, 2015, 44(9): 224-227.
Zhu Hai, Wang Jia, Zhu Guangyi, et al. Research on Effect of Inertia Friction Welding on Welding Process Parameters[J]. Hot Working Technology, 2015, 44(9): 224-227.
何全鑫. GH4169环形件惯性摩擦焊接过程数值模拟及焊接工艺研究[D]. 上海:华东理工大学, 2021.
He Quanxin. Numerical Simulation and Welding Technology Research of Inertia Friction Welding Process of GH4169 Ring Parts[D]. Shaihai:East China University of Science and Technology, 2021.
朱大喜. GH4169合金惯性摩擦焊接过程动态再结晶行为的数值模拟[D]. 辽宁:大连理工大学, 2009.
Zhu Daxi. Numerical Simulation of Dynamic Recrystallization Behavior of Gh4169 Alloy during Inertia Friction Welding Process[D]. Liaoning:Dalian University of Technology, 2009.
王锴, 刘金合, 郭德伦, 等. GH4169高温合金惯性摩擦焊的有限元模拟[J]. 热加工工艺, 2006, 35(23): 85-90.
Wang Kai, Liu Jinhe, Guo Delun, et al. Finite Element Modeling on Inertia Friction Welding Process for Superalloy GH4169[D]. Hot Working Technology, 2006, 35(23): 85-90.
刘漪涛,刘金合,卜文德. GH4169高温合金惯性摩擦焊过程的数值模拟[J]. 电焊机, 2005, 35(9) :54-57.
Liu Yitao, Liu Jinhe, Bu Wende. Numerical simulation of inertia friction welding process of superalloy GH4169[J]. Electric Welding Machine, 2005, 35(9) :54-57.
张利国, 姬书得, 张田仓, 等. FGH96合金惯性摩擦焊过程飞边形成的规律研究[J]. 北京理工大学学报, 2013, 33(1) :17-21.
Zhang Liguo, Ji Shude, Zhang Tiancang, et al. Research of Flash Forming During Inertia Friction Welding of FGH96 Alloy[D]. Transactions of Beijing Institute of Technology, 2013, 33(1) :17-21.
D’Alvise L, Massoni E, Walløe S J. Finite element modelling of the inertia friction welding process between dissimilar materials[J]. Journal of Materials Processing Technology, 2002(125-126) :387-391.
Bennett C J, Hyde T H, Williams E J. Modelling and simulation of the inertiafriction welding of shafts[J]. Proceedings of the Institution of Mechanical Engineers, Part L-Journal of Materials Design and Applications, 2007(221): 275-284.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关文章
相关作者
相关机构