Study on Microstructure and Properties of CO2 Surfacing Flux-Cored Wire on Q235 Steel
- Vol. 52, Issue 4, Pages: 82-88(2022)
DOI: 10.7512/j.issn.1001-2303.2022.04.12
扫 描 看 全 文
扫 描 看 全 文
张宇鹏,王永东,王金宇,等.Q235钢表面CO2堆焊药芯焊丝组织与性能研究[J].电焊机,2022,52(4):82-88.
ZHANG Yupeng, WANG Yongdong, WANG Jinyu, et al.Study on Microstructure and Properties of CO2 Surfacing Flux-Cored Wire on Q235 Steel[J].Electric Welding Machine, 2022, 52(4): 82-88.
为提高Q235普通碳素结构钢的耐磨性能和耐腐蚀性能,采用CO,2,气体保护焊在其表面堆焊药芯焊丝,利用蔡司高级金相显微镜、显微硬度测试仪、摩擦磨损试验机和电化学工作站等分析测试手段,研究不同焊接电流下的堆焊层的宏观形貌、显微组织、显微硬度、摩擦磨损性及耐腐蚀性。测试结果表明,当焊接电流为200 A时,堆焊层组织均匀,碳化物均匀弥散分布在组织内部,其显微硬度最高为500 HV,耐磨性能最好,磨损失重量为26 mg,磨损机理为磨粒磨损;当焊接电流为230 A时,热输入量最高,合金元素固溶于奥氏体基体的量增多,使其稳定性增加,从而提高了耐腐蚀性。
In order to improve the wear resistance and corrosion resistance of Q235 plain carbon structural steel, the flux cored wire was deposited on the surface of Q235 plain carbon structural steel by CO,2, gas metal arc welding technology, the macro-morphology, microstructure, micro-hardness, friction and wear resistance and corrosion resistance of the surfacing layer were studied, by using Zeiss's advanced metalloscope, micro hardness tester, friction and wear tester, and electrochemical workstation. The results show that when the welding current is 200 A, the microstructure of the surfacing layer is uniform, the carbide is evenly distributed in the microstructure, the microhardness is 500 HV, the wear resistance is the best, the wear loss weight is 26 mg, and the wear mechanism is abrasive wear. When the welding current is 230 A, the heat input is the highest, and the amount of alloy elements dissolved in austenite matrix increases, which increases its stability and corrosion resistance.
CO2气体保护焊显微组织耐磨性耐蚀性
CO2 gas metal arc weldingmicrostructurewear resistancecorrosion resistance
单际国, 董祖珏, 徐滨士. 我国堆焊技术的发展及其在基础工业中的应用现状[J]. 中国表面工程, 2002, 15(4): 19-22.
Shan J G, Dong Z Y, Xu B S. Development of build-up welding technology in China and its application in basic industry[J]. China Surface Engineering, 2002, 15(4): 19-22.
冒志伟, 杨可, 李嘉琪, 等. Nb和N对Fe-Cr13-C堆焊层金属耐磨性能的影响[J]. 电焊机, 2020, 50(08):
31-34,137.
Mao Z W, Yang K, Li J Q, et al. Effect of niobium and nitrogen on the wear resistance of Fe-Cr13-C hardfacing alloy[J]. Electric Welding Machine, 2020, 50(08): 31-34,137.
Peng S X, Zhou J, Zhang M M, et al. Fundamental research and numerical simulation of new hot stamping tool manufactured by surfacing technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(prepulish): 1-15.
朱厚囯, 赵昆, 霍树斌, 等. Nb-Ni-Ti-B强化药芯焊丝堆焊金属组织结构及耐磨性分析[J]. 电焊机, 2021, 51(03): 31-36,112-113.
Zhu H G, Zhao K, Huo S B, et al. Analysis of organizational structure and wear resistance of Nb-Ni-Ti-B strengthened flux-cored wire surfacing metal[J]. Electric Welding Machine, 2021, 51(03): 31-36,112-113.
王海林, 雷达, 顾珍珍, 等. 低碳钢电弧堆焊工艺对焊缝力学性能的影响[J]. 材料保护, 2020, 53(12): 84-87,115.
Wang H L, Lei D, Gu Z Z, et al. Effect of arc surfacing process on mechanical properties of low carbon steel weld[J]. Materials Protection, 2020, 53(12): 84-87,115.
王萌萌. Q235钢埋弧堆焊组织及性能的研究[J]. 价值工程, 2014, 33(28): 11-14.
Wang M M. On the organization and performance of Q235 steel submerged arc surfacing[J]. Value Engineering, 2014, 33(28): 11-14.
王佳伟. 外加钙镁氧化物对焊接用钢夹杂物的影响[J]. 铸造技术, 2013, 34(12): 56-60.
Wang J W. Influence of calcium and magnesium oxide to inclusions of welding steel[J]. Foundry Technology, 2013, 34(12): 56-60.
李越, 李玉龙, 李学文. Q235钢表面TIG焊堆焊铁基非晶涂层的组织与性能[J]. 材料导报, 2020, 34(18): 18135-18138.
Li Y, Li Y L, Li X W. Microstructure and properties of Fe-based amorphous coating on Q235 Steel substrate by TIG Welding[J]. Materials Reports, 2020, 34(18):
18135-18138.
李聪, 陈雪琴, 彭道衡, 等. Q235钢表面高强铁铬合金熔覆层的制备及性能研究[J]. 电镀与涂饰, 2019, 38(17): 922-927.
Li C, Chen X Q, Peng D H, et al. Preparation of high-strength iron-chromium alloy cladding coating on Q235 steel surface and study on its properties[J]. Electroplating & Finishing, 2019, 38(17): 922-927.
刘阳, 刘爱国, 张兴品, 等. Q235钢表面堆焊310不锈钢的组织与性能[J]. 沈阳理工大学学报, 2017, 36(05): 67-72.
Li Y, Li A G, Zhang X P, et al. Microstructure and properties of surfacing 310 stainless steel on Q235 Steel[J]. Journal of Shenyang Ligong University, 2017, 36(05): 67-72.
张金彪, 潘强, 杨华, 等. Q235钢表面TIG堆焊308L不锈钢的组织和性能研究[J]. 石油化工腐蚀与防护, 2017, 34(04): 18-21.
Zhang J B, Pan Q, Yang H, et al. Study on microstructure and performance of surfacing 308L stainless steel by TIG method on Q235 steel surface[J]. Corrosion & Protection in Petrochemical Industry, 2017, 34(04): 18-21.
李继东. 二氧化碳气体保护焊工作原理简介[J]. 中国新技术新产品, 2014(13): 4-10.
Li J D. A brief introduction to the working principle of carbon dioxide gas metal arc welding[J]. New Technology & New Products of China, 2014(13): 4-10.
金东发, 邹坤. 双相钢焊条电弧焊堆焊工艺研究[J]. 压力容器, 2014, 31(11): 74-78.
Jin D F, Zou K. Study on overlaying technology of duplex steel by SMAW[J]. Pressure Vessel Technology, 2014, 31(11): 74-78.
卓晓, 唐卫岗, 罗寿根, 等. Ni3Al基金属粉芯焊丝的堆焊工艺性研究[J]. 电焊机, 2021, 51(10): 15-18,49.
Zhuo X, Tang W G, Luo S G, et al. Study on surfacing process of Ni3Al-based metal powder-cored wire[J]. Electric Welding Machine, 2021, 51(10): 15-18,49.
刘朔峰. H3Cr5WMoV埋弧堆焊合金层的组织与性能[J]. 安徽工业大学学报, 2002, 19(4): 263-265.
Liu S F. Microstructure and properties of H3Cr5WMoV alloy layer for submerged arc surfacing welding[J]. Journal of Anhui University of Technology(Natural Science), 2002, 19(4): 263-265.
De Gee A W J, Rowe G W. Glossary of terms and definitions in the field of friction,wear and lubrication- tribology-in 3 pts[J]. Organization for Economic Co-operation and Development, 2011, 88(56):89-94.
裘荣鹏. B 元素对Cr-Ni-Mo-Mn系药芯焊丝堆焊金属组织结构的影响[J]. 电焊机, 2020, 50(8): 27-30.
Qiu R P. Effect of B element on microstructure of Cr-Ni-Mo-Mn series coating metal by surfacing with flux-cored wire[J]. Electric Welding Machine, 2020, 50(8): 27-30.
A.N.J.Stevenson, I.M.Hutchings. Wear of hardfacing white cast irons by solid particleerosin[J]. Wear, 2012(l86-187): 150-158.
Chatterjee S,Pal TK. Wear behavior of hardfacing deposits on cast iron[J]. Wear, 2013, 255:417-431.
王冬春, 杜锦涛, 刘辉, 等. 碳化钨耐磨材料激光熔覆关键问题[J]. 电焊机, 2021, 51(8): 146-152,182.
Wang D C, Du J T, Liu H, et al. Key issues in laser cladding of tungsten carbide wear resistant materials[J]. Electric Welding Machine, 2021, 51(8): 146-152,182.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关文章
相关作者
相关机构