Study on Microstructure and Properties of Pulsed TIG Welded Joints of Austenitic Stainless Steel with Nitrogen and Low Nickel
- Vol. 52, Issue 1, Pages: 68-76(2022)
DOI: 10.7512/j.issn.1001-2303.2022.01.09
扫 描 看 全 文
扫 描 看 全 文
冯家玮,江来珠,徐锴,等.低镍含氮奥氏体不锈钢脉冲TIG焊接接头组织性能研究[J].电焊机,2022,52(01):68-76.
FENG Jiawei, JIANG Laizhu, XU Kai, et al.Study on Microstructure and Properties of Pulsed TIG Welded Joints of Austenitic Stainless Steel with Nitrogen Content and Low Nickel Content[J].Electric Welding Machine, 2022, 52(01): 68-76.
QN1803作为一种低镍含氮奥氏体不锈钢,相对于传统304奥氏体不锈钢减少了60% Ni含量,具有更优异的力学性能与耐腐蚀性能,同时节约了成本,目前广泛应用于建筑装饰、医疗器械、家电制品等领域。以低镍含氮奥氏体不锈钢QN1803为研究对象,采用脉冲TIG焊,借助SEM、OM、HV等测试手段研究焊接热输入对焊接接头的微观组织、力学性能、腐蚀性能的影响。结果表明,QN1803室温组织由铁素体和奥氏体组成,HAZ区晶粒与母材相比未见明显长大,接头熔合良好;焊接接头抗拉强度为650~700 MPa,焊缝组织硬度为240~260 HV。随着热输入的增加,焊缝点蚀电位由340 mV下降至290 mV,晶间腐蚀速率由455.3 g/(m,2,·h)提升至570.6 g/(m,2,·h),表明焊接接头耐腐蚀性能随着热输入的增加而下降;应用有限元软件MSC.Marc对不同焊接热输入条件下的焊接温度场及残余应力场进行模拟。结果表明,焊后残余应力集中分布于PMZ区及HAZ区;且残余应力峰值随焊接热输入增加呈上升趋势。
As a kind of low nickel nitrogen austenitic stainless steel, QN1803 reduces the Ni content by 60% compared with the traditional 304 austenitic stainless steel, and has better mechanical properties and corrosion resistance while saving cost. At present, it is widely used in architectural decoration, medical devices, household appliances and other fields. In this paper, the low nickel nitrogen austenitic stainless steel QN1803 was welded by pulsed TIG welding. The effects of welding heat input on the microstructure, mechanical properties and corrosion properties of welded joints were studied by means of SEM, OM, HV and so on. The results show that the microstructure of QN1803 at room temperature is composed of ferrite and austenite, the grain in HAZ zone does not grow obviously compared with the base metal, and the joint fuses well, the tensile strength of the welded joint is between 650~700 MPa and the hardness of the weld is between 240~260 HV. With the increase of heat input, the pitting potential of weld decreased from 340 mV to 290 mV, the intergranular corrosion rate increased from 455.3 g/(m,2,·h) to 570.6 g/(m,2,·h), and the corrosion resistance of welded joint decreased with the increase of heat input. The finite element software MSC.Marc is used to simulate the welding temperature field and residual stress field under different welding heat input conditions. The results show that the residual stress after welding is concentrated in PMZ zone and HAZ zone, and the peak value of residual stress increases with the increase of welding heat input.
低镍含氮奥氏体不锈钢脉冲TIG焊焊接接头数值模拟
austenitic stainless steelpulsed TIG weldingmechanical propertiescorrosion propertiesnumerical simulation
Jeetendra Kumar Malav,Ramesh C. Rathod,Vipin Tandon,et al. Enhancement of corrosion protection of low nickel austenitic stainless steel by electroactive polyi-mide-CuO composites coating in chloride environment[J]. Anti-Corrosion Methods and Materials,2019,66(6):347-353.
Pramod Kumar,Amar Nath Sinha,Chetan Kumar Hirwani,et al. Investigation of TIG Cladding of Ni-Ti Wire on Substrate 304L to Study the Effect of Applied Current on Microstructure and Mechanical Properties[J]. Transactions of the Indian Institute of Metals,2021(prepublish):16-23.
Jijin Xu,Shuai Wang,Ze Chai,et al. Comparison of the Stress Corrosion Cracking Behaviour of AISI 304 Pipes Welded by TIG and LBW[J]. Acta Metallurgica Sinica (English Letters),2020(prepublish):11-16.
李志,高谦,何冰,等. 节镍型奥氏体不锈钢1Cr17Mn-9Ni4N的组织和力学性能[J]. 钢铁研究学报,2005(2):68-71.
LI Zhi,GAO Qian,HE Bing, et al. Microstructure and Mechanical Properties of 1Cr17Mn9Ni4N Steel[J]. Journal of Iron and Steel Research, 2005(2):68-71.DOI:10.13228/j.boyuan.issn1001-0963.2005.02.016http://dx.doi.org/10.13228/j.boyuan.issn1001-0963.2005.02.016.
赵朴. 化学成分和固溶温度对1Cr17Mn9Ni4N不锈钢组织和性能的影响[J]. 钢铁研究学报,2003,(3):21-24.
ZHAO Pu. Effects of Composition and Solution-Annealing Temperature on Microstructure and Mechanical Properties of Stainless Steel 1Cr17Mn9Ni4N[J]. Journal of Iron and Steel Research, 2003(3):21-24.
程世佳,朱志明,符平坡.基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J].清华大学学报(自然科学版):2021,61(9):994-1001.
CHEN Shijia,ZHU Zhiming,FU Pingpo. Arc shape variations and characteristic temperatures of pulsed TIG welding arcs based on observed arc images[J]. Journal of Tsinghua University(Science and Technology),2021,
61(9):994-1001.DOI:10.16511/j.cnki.qhdxxb.2020.25.035http://dx.doi.org/10.16511/j.cnki.qhdxxb.2020.25.035.
Sahoo Ajitav,Tripathy Sasmeeta. Improvement in Depth of Weld Penetration During TIG, Activated-TIG, and Pulsed TIG Welding: A Review[J]. International Journal of Manufacturing, Materials, and Mechanical Engineering (IJMMME),2021,11(2):19-24.
Mutascu Daniel,Mitelea Ion,Bordeasu Ilare,et al. Hardfacing of X2CrNiMoN225-3 Duplex stainless steel with Stellite alloy using pulsed TIG welding process[J]. Materials Today:Proceedings,2021,45(P5):4112-4116.
黄文翔,张春,李汇,等.06Cr18Ni11Ti不锈钢薄板脉冲TIG焊数值模拟[J].热加工工艺,DOI:10.14158/jhttp://dx.doi.org/10.14158/j.
cnki.1001-3814.20200946.
韩晓辉,杨志斌,张志毅,等.热输入对不锈钢激光搭接焊接头晶间腐蚀敏感性的影响[J].焊接学报,2019,
40(4):148-153,167.
HAN Xiaohui,YANG Zhibin,ZHANG Zhiyi,et al. Effects of heat input on the intercrystalline corrosion sensitivity of laser overlapped welded stainless steel joints[J]. Transactions of the China Welding Institution,2019,40(4):148-153,167.
顾玉芬,边春红,李春凯,等. 不同组元活性剂对不锈钢脉冲TIG焊熔池表面张力的影响[J]. 焊接学报,220,41(6):48-53,99-100.
GU Yufen,BIAN Chunhong,LI Chunkai,et al. Effect of different component active fluxes on surface tension of weld pool in stainless steel[J]. Transactions of the China Welding Institution,2020,41(6):48-53,99-100.
方乃文,黄瑞生,闫德俊,等.低镍含氮奥氏体不锈钢激光-电弧焊电弧特性及组织性能[J].焊接学报,2021,42(1):70-75,102.
FANG Naiwen,HUANG Ruisheng,YAN Dejun,et al. Effect of welding heatinput on microstructure and properties of MAG welded joint for low nickel high nitrogen austenitic stainless steel[J]. Transactions of the China Welding Institution,2021,42(1):70-75,102.
张红卫,桂良进,范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版):1-7.
ZHANG Hongwei,GUI Liangjin,FAN Zijie. Research and verification of welding heat source parameter optimization model[J/OL].J Tsinghua Univ.(Sci.&Technol.):1-7.DOI:10.16511/j.cnki.qhdxxb.2021.25.011http://dx.doi.org/10.16511/j.cnki.qhdxxb.2021.25.011.
相关作者
相关机构