Study on Spot Welding Process and Joint Properties of Hot Dip Galvanized Dual Phase Steel HC420/780DPD+Z
- Vol. 54, Issue 5, Pages: 124-129(2024)
Published: 25 May 2024
DOI: 10.7512/j.issn.1001-2303.2024.05.18
Quote
PDF
Scan for full text
Published: 25 May 2024
Scan for full text
Quote
To acquire the resistance spot welding process window for automotive hot-dip galvanized dual-phase steel, spot welding experiments were performed on 1.5 mm thick HC420/780DPD+Z using a medium-frequency inverter resistance spot welding machine. By adjusting parameters such as electrode pressure, a welding process window consisting of various welding times and currents was established. The performance of the spot-welded joints was comprehensively assessed through microhardness testing, shear and cross-tensile tests, and metallographic examination. The research indicates that under the optimal welding process window with a welding time of 410~430 ms and a welding current of 3.4~3.6 kA, defect-free welded joints without shrinkage pores or cracks can be achieved. The average shear strength of the joints is 14.88 kN, and the average cross-tensile strength is 7.1 kN. The microhardness in the nugget zone ranges from 402~455 HV, while the hardness in the heat-affected zone is 237 HV, with no signs of embrittlement observed. The electrode life exceeds 500 weld points, meeting the requirements of the GWS-5A standard. With this process, the mechanical properties of the joints are superior, and the microstructure is primarily composed of martensite, with the hardness distribution indicating the highest hardness in the nugget zone. Additionally, the failure modes of the welded joints are predominantly interfacial fractures and button-type nugget fractures, the latter of which has greater load-bearing capacity and energy absorption capability.
汽车用先进高强钢-双相钢是兼具高强度和较好成形性的先进高强钢,在轻量化车身制造中被广泛应用,电阻点焊是双相钢材料的主要连接工艺。然而高强钢在电阻点焊过程中存在焊接工艺窗口狭窄、焊接变形磨损严重,极易产生飞溅、缩孔和裂纹等缺陷,并且点焊熔核中柱状晶易形成熔核的薄弱面,造成拉剪强度低,降低焊接接头的力学性能,点焊接头质量得不到有效保证。尤其是镀锌双相钢板,由于镀锌层的影响,780 MPa级热镀锌双相钢点焊工艺窗口比普通热镀锌钢更窄[
因此,本文针对汽车用热镀锌双相钢HC420/780DPD+Z进行了点焊工艺窗口研究,通过调整电极压力等参数,经过大量反复试验,得到由不同焊接时间、焊接电流等组成的焊接工艺窗口。并对电阻点焊接头的性能进行评价,包括焊点显微硬度、剪切拉伸和十字拉伸等力学试验。对焊点的断裂模式进行失效分析并进行等级评价,通过测量熔核直径、纽扣直径以及拉伸力值等,从宏观上分析其焊接性能,同时对点焊接头不同区域的组织进行显微分析。
试验用材料为1.5 mm厚热镀锌双相钢HC420/780DPD+Z,锌层厚度为8.8 μm,化学成分如
C | Si | Mn | P | S | Als | Nb | Cr |
---|---|---|---|---|---|---|---|
0.13~0.18 | 0.3~0.4 | 1.5~1.8 | ≤0.01 | ≤0.005 | 0.04 | 0.01~0.03 | 0.3~0.5 |
为确定点焊工艺窗口,采用中频逆变式电阻点焊机PMP600进行试验,频率设置为50 Hz。电极帽材质为CrZrCu合金,电极帽型号为F1-16-20-6,端面直径为6 mm。在焊接过程中进行水冷。参照通用标准GWS-5A进行工艺窗口试验及焊点质量评价试验[
图1 十字拉伸试样、抗剪拉伸试样以及显微硬度测量试样
Fig.1 Cross tensile test sample, shear tensile test sample and microhardness measurement sample
(1)金相检验。在研磨、抛光和蚀刻后,用显微镜和扫描电镜观察焊缝金属和热影响区的显微组织变化,以确定是否存在裂纹或孔洞等缺陷,并测量熔核直径。
(2)显微硬度试验。使用维氏显微硬度计在0.2 kg载荷下,通过母材、热影响区、焊缝区,对从一个金属板母材到另一个金属板母材的对角线方向对金相试样进行显微硬度测量。
(3)十字拉伸试验。拉伸速度为8 mm/min,试验中记录各个试样的最大拉伸力,同一点焊工艺参数条件下,最后取三个试样最大十字拉伸力的平均值。
(4)拉伸剪切试验。为了避免试样在拉剪试验时附加弯矩的影响,在试样两端夹持部分分别加上一片与试样等厚度的垫片。拉剪试验的拉伸速度为8 mm/min。
(5)极头寿命试验。采用G点的焊接工艺即中等焊接时间,以50个点为一组,且每分钟30个点的速度进行试验,直到500个点合格或者焊点直径小于要求的最小直径时停止试验。
电阻点焊的焊接工艺窗口由两条曲线即最小焊点直径曲线和飞溅曲线定义。最小焊点直径曲线是根据3个不同焊接时间下的3个试样确定的最小焊点直径所对应的电流值组成,镀锌DP780本次试验焊接时间为:最小(430 ms)、中等(420 ms)、最大(410 ms);而飞溅曲线由这3个焊接时间下发生飞溅的临界电流值组成。镀锌DP780的焊接工艺窗口如
图2 热镀锌钢板 HC420/780DPD+Z的点焊工艺窗口
Fig.2 Spot welding process window of hot-dip galvanized steel sheet HC420/780DPD+Z
由
评估钢的焊接电流范围采用恒流模式下的常规电阻点焊,而非自适应焊接模式。对于热镀锌HC420/780DPD+Z的电阻点焊,采用CuCrZr材料的圆顶电极帽,这种材料在高温下具有良好的导电性、导热性和强度。电极帽的尺寸和几何形状对焊接结果(焊点尺寸、焊接范围、板材表面压痕深度)非常重要。平电极帽相比圆顶电极帽需要更大的电极力。对于热镀锌HC420/780DPD+Z板材,与冷轧DP780相比,需要增加电极压力、焊接时间和焊接电流,以补偿由于镀锌而导致的焊接范围缩小。随着电极压力的增加和焊接时间的延长,热镀锌HC420/780DPD+Z可获得较大的焊接电流范围。
采用线切割方法沿着熔核中心垂直切开并镶嵌,试样打磨、抛光,用硝酸酒精溶液腐蚀后,在扫描电镜下观察微观组织,母材、熔核区与过渡区的显微组织如
图3 点焊接头显微组织
Fig.3 Microstructure of spot welded joint
对每个特征点的焊点横截面进行金相检测,测试得出焊点的熔核直径,焊点截面金相组织如
图4 不同焊点横截面的金相照片
Fig.4 Metallographic photos of cross-sections of weld points at different characteristic points
焊接工艺参数窗口分别通过十字拉伸和剪切拉伸试验获得静态焊接强度,以量化静态承载能力。针对HC420/780DPD+Z镀锌板焊接工艺窗口的A~F六个特征点进行抗剪试验和十字拉伸试验,其结果如
图5 热镀锌钢板 HC420/780DPD+Z点焊接头力学性能
Fig.5 Mechanical properties of spot welded joints of hot-dip galvanized steel sheet HC420/780DPD+Z
图6 热镀锌钢板HC420/780DPD+Z点焊接断裂宏观形貌
Fig.6 Macroscopic morphology of fracture in spot welded joints of hot-dip galvanized steel sheet HC420/780DPD+Z
(a)界面断裂 (b)部分界面断裂 (c)纽扣型熔核断裂
焊点失效通常为全纽扣失效,但在电流较小、焊接时间较短,尤其A、B、C点,会出现部分纽扣失效,其原因是热镀锌HC420/780DPD+Z与低强度钢相比,具有更高的合金元素含量。与拉伸剪切试验相比,十字拉伸试验更容易获得
界面断裂(见
使用硬度计对焊点周围进行硬度测量,测量条件为200 g负荷。G点的显微硬度分布曲线如
图7 HC420/780DPD+Z点焊接头显微硬度分布
Fig.7 Microhardness distribution of HC420/780DPD+Z spot welded joint
在电极寿命测试过程中焊点形核直径的变化如
图8 试验过程中焊点纽扣直径的变化
Fig.8 Change of button diameter of weld joint during test
电阻点焊中的电极寿命在需要重新修整电极之前,知道可以进行多少次焊接是很重要的。在同一电极类型、焊接设备、焊接速度和水冷参数下,镀锌板比冷轧板的电极寿命更低,这是因为锌层容易粘连在电极帽上,造成导电不良,从而减小电流密度,降低电极帽寿命。
(1)通过焊接试验测得厚度为1.4 mm HC420/780DPD+Z热镀锌钢板的最佳焊接工艺窗口,在焊接时间410~430 ms,焊接电流范围为3.4~3.6 kA。
(2)HC420/780DPD+Z平均抗剪力为14.88 kN,十字拉伸平均力值为7.1 kN;焊点结合微观照片中未见明显缩孔、裂纹等缺陷,减薄都未超过30%,显微硬度曲线没有发现脆化点。
(3)电极寿命测试过程中,未出现焊点形核直径小于4.74 mm 的点,满足GWS-5A标准要求。
(4)点焊接头组织为马氏体,且马氏体含量较高,焊点的失效形式为界面失效和熔核剥离失效。点焊接头的显微硬度分布规律基本相似,熔核区的硬度最高,从熔核边界到母材热影响区的硬度逐渐降低,在靠近母材区域出现了热影响区软化现象(即此区域显微硬度低于母材),母材区域的硬度比熔核区和热影响区都低,显微硬度约为237 HV。
(5)焊接头拉剪断裂主要为界面断裂和纽扣型熔核断裂,纽扣型熔核断裂的承载能力和能量吸收能力都比界面断裂大,在实际生产中需要保证点焊接头发生纽扣型熔核断裂。
张玉菊,陈颖,张广峻,等.工艺参数对1000 MPa 级高强度结构钢点焊接头组织与性能的影响[J].焊接,2018(9),26-30. [Baidu Scholar]
ZHANG Y J,CHEN Y,ZHANG G J,et al. Effect of process parameters on microstructure and properties of spot welded joints of 1000MPa grade high strength steel structure[J]. Welding & Joining,2018(9),26-30. [Baidu Scholar]
Mayyas A T,Mayyas A R,Omar M. Sustainable lightweight vehicle design: a case study in eco-material selection for body-in-white[J]. Lightweight Composite Structure in Transport, 2016, 11:267-302. [Baidu Scholar]
龚涛,王辉,缪凯,林承江,等. 600 MPa级高Al冷轧双相钢点焊接头断裂方式[J]. 焊接技术, 2011(09):13-16. [Baidu Scholar]
GONG T,WANG H,MIU K,et al. Research on fracture mode of spot welding joint of high Al cold rolled dual-phase steel in 600MPa level[J]. Welding Technique,2011(09):13-16. [Baidu Scholar]
Feng Q B,Li Y B,Carlson B E,et al. Study of resistance spot weldability of a new stainless steel[J]. Science and Technology of Welding and Joining, 2019, 24(2):101-111. [Baidu Scholar]
GWS-5A-2007,Global Welding Standard Test Procedures Resistance Spot Welding of Steel[S].General Motors Corporation, 2011-4-23. [Baidu Scholar]
陈飞,李敬勇. 车用热成形钢板USIBOR1500P电阻点焊焊接工艺优化及接头组织与性能[J]. 热加工工艺. 2016(07),52-53. [Baidu Scholar]
CHEN F,LI J Y. Resistance Spot Welding Process Optimization and Microstructure and Performance of Joint of USIBOR1500P Hot Forming Steel Sheet[J]. Hot Working Technology, 2016(07):52-53. [Baidu Scholar]
LIU C J,ZHENG X K,HE H Y,et al. Effect of work hardening on mechanical behavior of resistance spot welding joint during tension shear test[J]. Materials & Design,2016,100:188-197. [Baidu Scholar]
Hernandez B V H,Nayak S S,Zhou Y. Tempering of martensite in dualphase steels and its effects on softening behavior[J]. Metall Mater Trans A,2011,42:3115-3129. [Baidu Scholar]
Pouranvari M,Marashi S P H. Critical review of automotive steels spot welding:process,structure and properties[J].Science and Technology of Welding and Joining,2013,18(5):361-403. [Baidu Scholar]
贾松青,张永强,刘兴全,等. 高强热镀锌钢板锌层厚度对电阻点焊工艺的影响[J]. 电焊机,2014,44(5):74-78. [Baidu Scholar]
JIA S Q,ZHANG Y Q,LIU X Q,et al. The influence of zinc layer thickness on resistance spot welding process of high-strength hot-dip galvanized steel sheet[J]. Electric Welding Machine, 2014,44(5):74-78. [Baidu Scholar]
编辑部网址:http://www.71dhj.com [Baidu Scholar]
Related Articles
Related Author
Related Institution