Research on the Application of Double Wire Process in Bridge U-rib Welding
- Vol. 54, Issue 5, Pages: 92-97(2024)
Published: 25 May 2024
DOI: 10.7512/j.issn.1001-2303.2024.05.13
Quote
PDF
Scan for full text
Published: 25 May 2024
Scan for full text
Quote
Bridge U ribs are usually produced by multiple welding machines at the same time, and the melting pole gas welding machine or submerged arc welding machine can be selected, and the welding speed is generally about 0.4 m/min. This paper uses Tandem double wire welding process for testing, under the premise of ensuring welding quality, the welding speed can be increased to 1.2 m/min, which greatly improves the production efficiency. The test found that when multiple sets of double-wire welding equipment were welded to the end of the U rib at the same time, the phenomenon of arc magnetic bias blowing was very easy to occur, which affected the welding penetration and weld formation at the end of the U rib, resulting in poor welding. To solve this problem, a control method to suppress arc bias blowing was developed, which mainly increases the second pulse current in the base value stage of the pulse current to improve the anti-interference ability of the arc. The peak current, peak time and number of the second pulse affect the effect of suppressing arc bias, and the number of the second pulse is calculated according to the base value maintenance time of the first pulse and stored in the welding machine, and the peak current and peak time of the second pulse are adjusted in real time according to the change of the base value feedback voltage. At the same time, when the main machine and slave trigger the output of the second pulse in the double wire welding process, the test finds that the main machine triggers the output of the second pulse according to the parameters stored in the welding machine, and the moment when the slave triggers the second pulse is controlled by the host, and when the host is in the pulse peak decline stage, the slave outputs the second pulse, and the welding effect is the best.
电弧焊接方式在实际生产中有着广泛的应用,施工过程中焊接电弧受到电磁力的作用会产生磁偏吹的现象[
U型肋又称为闭口肋,是一种应用于公路铁路桥梁的承载箱体或大型衡器承载结合件等部位的一种加强肋板,要求具有较高的承载能力,焊接需要达到全熔透[
试验设备采用唐山松下全新开发的第二代Tandem双丝焊接系统,整套系统包含1台LA-1800G3重载机器人、2台500GS6HVS高性能全数字焊接电源、1套CSF011HAF镜像送丝装置、1把CTW501HAE双丝焊枪、三路独立液体循环冷却系统WTUX
W00004等[
为降低焊接调试难度、简化设备操作步骤、减少设备投入,提升生产效率,采用脉冲熔化极双丝气保焊的焊接工艺,焊接速度由0.4 m/min提升至1.2 m/min,从焊接电源的角度入手改善现有的波形控制方法,开发了抑制电弧偏吹的新控制方法。新控制方法主要是在现有脉冲基值阶段增加第二脉冲的方式,提高电弧的抗干扰能力,从而有效地减少了双丝焊接工艺中电弧偏吹的现象。
使用脉冲方式焊接时,由于基值电流较小,电弧的刚直性较差,容易发生电弧偏吹[
图1 电弧偏吹时电流电压波形
Fig.1 Current and voltage waveform diagram when arc biasing
由
在脉冲焊接中,基值电流的大小会影响基值电压的稳定性,从而可能对电弧的稳定性产生影响。增大基值电流能够维持电弧的稳定性,从而减弱电弧偏吹的影响,然而基值电流的增加直接影响了熔滴的过渡频率,尤其是在中小电流段,基值电流的增加会导致熔滴过渡频率降低,直接影响焊缝成形和熔深,造成焊接不良。因此本文从间断性增大基值电流的角度出发,进行波形的控制改善,如
图2 第二脉冲电流波形控制
Fig.2 Pulsating current control graph
第二峰值电流的调整方法如下:
IPAsnd=IBAfst +IBVstd-IBVfedIBVstd×KP1
式中 IPAsnd为第二脉冲的峰值电流;IBAfst为第一脉冲的基值电流;IBVstd为基值电压的标准值;IBVfed为基值电压的实际反馈值;KP1为第二峰值电流的调整系数。
第二峰值时间的调整方法如下:
IPTsnd=IPTstd +IBVstd-IBVfedIBVstd×KP2
式中 IPTsnd为第二脉冲的峰值时间;IPTstd为第二脉冲预设的标准时间;IBVstd为基值电压的标准值;IBVfed为基值电压的实际反馈值;KP2为第二峰值时间的调整系数。
确定好控制方法后,开始进行数据调试确定相关的调整系数。改变第二脉冲峰值电流和第二脉冲峰值时间,经焊接试验推导出第二脉冲峰值电流调整系数KP1和第二脉冲峰值时间调整系数KP2,并将推导出的KP1、KP2值保存到专家数据库中。以主从机设定电流240 A为例,保持设定电压、干伸长和焊接速度不变,只改变第二脉冲峰值电流的大小,制定焊接试验数据调试表,如
主机 设定电流/A | 主机 设定电压/V | 干伸长 /mm | 从机 设定电流/A | 从机 设定电压/V | 焊接 速度 /m·min-1 | 第一脉冲基值电流/A | 第二脉冲峰值电流/A |
---|---|---|---|---|---|---|---|
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 140 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 170 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 200 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 230 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 260 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 300 |
主机 设定电流/A | 主机 设定电压/V | 干伸长 /mm | 从机 设定电流/A | 从机 设定电压/V | 焊接 速度 /m·min-1 | 第一脉冲基值电流/A | 第二脉冲峰值电流/A |
---|---|---|---|---|---|---|---|
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 0.2 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 0.4 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 0.6 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 0.8 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 1.0 |
240 | 27.2 | 22 | 240 | 29.4 | 1.0 | 110 | 1.2 |
参照设定电流240 A的调试方法,推导出其他电流段的KP1、KP2值,保存到焊接专家数据库中。调试过程中发现当设定电流较小时,脉冲基值维持时间比较长,如果增加一个第二脉冲电流,偶尔会出现基值电压不稳的情况,增加第二脉冲个数后,基值电压稳定性提升,偶发的基值电压不稳情况减少。不同设定电流的实际焊接电流和电压波形如
图3 设定电流80 A焊接电流、电压波形
Fig.3 Current and voltage waveform graph of 80 A
图4 设定电流140 A焊接电流、电压波形
Fig.4 Current and voltage waveform graph of 140 A
图5 设定电流200 A焊接电流、电压波形
Fig.5 Current and voltage waveform graph of 200 A
图6 设定电流240 A焊接电流、电压波形
Fig.6 Current and voltage waveform graph of 240 A
图7 设定电流280 A焊接电流、电压波形
Fig.7 Current and voltage waveform graph of 280 A
图8 设定电流320 A焊接电流、电压波形
Fig.8 Current and voltage waveform graph of 320 A
从
将开发的第二脉冲电流控制方法在U型肋板上进行多焊机多焊枪的焊接验证,U型肋板材质为碳钢Q235,底板厚度12 mm,立板厚度14 mm。采用专机系统,系统中配备16台焊接电源,8把双丝焊枪,使用直径1.2 mm MG-51T碳钢焊丝,焊接速度1.2 m/min,焊脚尺寸大于8 mm。观测焊接过程中尤其是焊接到工件末端时电弧的稳定性,并使用长时间波形记录仪采集焊接电流电压波形,整套焊接平台参见
图9 U型肋焊接试验平台
Fig.9 Welding test platform of U-rib
双丝焊接模式的主机与从机常使用反相位模式,即主机峰值阶段对应从机基值阶段,主机基值阶段对应从机峰值阶段,双丝反相位模式焊缝宽、焊接飞溅小,适用于大多数的材质和应用场景。由于双丝焊接时两个电弧之间有很强的吸引力,峰值阶段的电弧力很强,容易将另一个处于基值阶段的电弧吸引过来,影响电弧的指向性,因此触发第二脉冲的时刻非常重要。主机按专家数据库中的参数正常输出,从机受到主机的控制,试验主机处于不同的脉冲阶段时,触发从机输出第二脉冲对电弧的影响,制定试验参见
主机 设定电流/A | 主机 设定电压/V | 干伸长 /mm | 从机 设定电流/A | 从机 设定电压/V | 焊接速度 /(m·min-1) | 主机触发从机 第二脉冲时刻 |
---|---|---|---|---|---|---|
300 | 29.4 | 23 | 280 | 30.2 | 1.2 | 脉冲上升阶段 |
300 | 29.4 | 23 | 280 | 30.2 | 1.2 | 脉冲峰值初始阶段 |
300 | 29.4 | 23 | 280 | 30.2 | 1.2 | 脉冲峰值结束阶段 |
300 | 29.4 | 23 | 280 | 30.2 | 1.2 | 脉冲下降阶段 |
试验中主机设定电流和电压、从机设定电流和电压、干伸长、焊接速度等参数保持不变,只改变触发从机第二脉冲的时刻,观察电弧的变化,焊接波形如
图10 主机脉冲上升阶段触发
Fig.10 Trigger in the pulse rises phase of leader
图11 主机脉冲峰值初始阶段触发
Fig.11 Trigger in the initial pulse peak of leader
图12 主机脉冲峰值结束阶段触发
Fig.12 Trigger in the end pulse peak of leader
图13 主机脉冲下降阶段触发
Fig.13 Trigger in the pulse falling phase of leader
图14 U肋板焊缝成形
Fig.14 Weld forming draw of U-rib
图15 U肋焊接金相
Fig.15 Welding metallographic draw of U-rib
(1)桥梁U肋使用双丝焊接工艺可以极大的提高生产效率,与单丝焊接相比焊接速度从0.4 m/min提升至1.2 m/min。
(2)脉冲基值阶段增加第二脉冲可以有效地提高焊接电弧的抗干扰能力,抑制磁偏吹出现的现象,第二脉冲的个数一般不超过3个,第二脉冲的峰值电流、峰值时间等参数根据实际反馈的焊接电流和电压进行实时调整。
(3)双丝焊接工艺通常使用反相位模式,主机按照预置参数触发输出第二脉冲,从机触发第二脉冲的时刻受主机控制,当主机处于脉冲峰值下降阶段时触发从机输出第二脉冲,焊接效果最好。进行实际焊接测试,当焊接速度为1.2 m/min时,整个焊接过程电弧稳定成形美观,焊脚尺寸大于8 mm,满足焊接要求。
庞延波,靳泽. 钢板面板U肋全熔透焊缝疲劳性能试验研究[J]. 公路,2022,67(11) :124-131. [Baidu Scholar]
PANG Y B,JIN Z. Experimental Study on the Fatigue Performance of Full Penetration Welds in Steel Plate Panel U Ribs[J]. Highway, 2022, 67(11): 124-131. [Baidu Scholar]
杨良泽,吉伯海,袁周致远,等. 钢箱梁顶板-U肋焊缝斜裂纹的受力特征及其对焊趾的影响[J]. 扬州大学学报(自然科学版) ,2022,25(03) :61-68. [Baidu Scholar]
YANG L Z,JI B H,YUANZHOU Z Y,et al. The stress characteristics of oblique cracks in the top plate - U rib weld of steel box beams and their impact on the weld toe[J]. Journal of Yangzhou University (Natural Science Edition), 2022,25(03): 61-68. [Baidu Scholar]
苏立虎. Tandem双丝气保焊相位控制方法的研究[J]. 电焊机,2021,51(6):57-62. [Baidu Scholar]
SU L H. Research on Phase Control Method of Tandem Double Wire Gas Shielded Welding[J]. Electric Welding Machine,2021,51(6):57-62. [Baidu Scholar]
郑佳,李亮玉,钟蒲,等. 双丝三电弧焊中熔滴过渡及焊缝成形机理[J]. 焊接学报,2019,40(7):31-36. [Baidu Scholar]
ZHENG J,LI L Y,ZHONG P,et al.Mechanism of droplet transfer and weld formation in double wire triple arc welding[J]. Journal of Welding,2019,40(7):31-36. [Baidu Scholar]
杨新华. 电弧焊方法中磁偏吹产生原因及防止措施[J]. 热加工工艺,2015,44(15):233-238. [Baidu Scholar]
YANG X H. Causes and Preventive Measures for Magnetic Bias Blowing in Arc Welding Methods[J]. Hot Working Technology,2015,44(15):233-238. [Baidu Scholar]
WU B,LIU J,SONG Q,et al. Controllability of joint integrity and mechanical properties of friction stir welded 6061-T6 aluminum and AZ31B magnesium alloys based on stationary shoulder[J]. High Temperature Materials and Processes, 2019, 38: 557-566. [Baidu Scholar]
SONG Q,WANG H R,JI S D,et al.Improving joint quality of hybrid friction stir welded Al/Mg dissimilar alloys by RBFNN-GWO system[J]. Journal of Manufacturing Processes, 2020, 59: 1-10. [Baidu Scholar]
韦宝成,孙昕辉,杨尚玉. 浅谈LNG储罐9%Ni钢焊接过程中的磁偏吹问题[J]. 焊接技术,2020,49(6):98-102. [Baidu Scholar]
WEI B C,SUN X H,YANG S Y. Discussion on Magnetic Bias Blowing during the Welding Process of 9% Ni Steel for LNG Storage Tanks[J]. Welding Technology,2020,49(6):98-102. [Baidu Scholar]
编辑部网址:http://www.71dhj.com [Baidu Scholar]
Related Articles
Related Author
Related Institution