激光增材制造铝合金微观结构及性能研究进展
Critical Review of Laser Additive Manufactured Aluminum Alloys Parts
- 2025年55卷第2期 页码:1-17
收稿日期:2024-07-17,
修回日期:2024-07-29,
纸质出版日期:2025-02-20
DOI: 10.7512/j.issn.1001-2303.2025.02.01
移动端阅览
浏览全部资源
扫码关注微信
收稿日期:2024-07-17,
修回日期:2024-07-29,
纸质出版日期:2025-02-20
移动端阅览
随着现代制造业对材料性能和生产效率的追求,激光增材制造技术因其独特的优势成为研究热点。由于铝合金性能优异,激光增材制造铝合金得到了广泛应用。系统阐明了激光增材制造铝合金的微观组织、耐腐蚀性能、力学性能以及缺陷分析和未来发展趋势。探讨了四种不同类型的激光增材制造铝合金的微观组织。研究表明,激光增材制造过程中的非平衡凝固和大温度梯度导致了与传统铸造工艺不同的微观结构。在耐腐蚀性能方面,激光增材制造铝合金表现出了较好的耐蚀性,这是由于激光增材制造铝合金微观结构的均匀性和晶粒细化而具有潜在的优势。在力学性能方面,激光增材制造铝合金因其细小的晶粒尺寸展现出优异的力学性能,并指出通过优化工艺参数可以进一步提高铝合金的性能。最后,指出激光增材制造铝合金在孔隙率和裂纹等缺陷控制方面仍面临挑战,并提出了未来的发展方向。
With the pursuit of material performance and productivity in modern manufacturing industry
laser additive manufacturing technology has become a research hotspot due to its unique advantages. Due to the excellent performance of aluminium alloy
laser additive manufacturing of aluminium alloy has been widely used. This paper systematically elucidates the microstructure
corrosion resistance
mechanical properties as well as defect analysis and future development trend of laser additively manufactured aluminium alloys. The microstructures of four different types of laser additively manufactured aluminium alloys are explored. It is shown that the non-equilibrium solidification and large temperature gradient in the laser additive manufacturing process lead to a different microstructure from that of the conventional casting process. In terms of corrosion resistance
the laser additively manufactured aluminium alloys showed better corrosion resistance
which is potentially advantageous due to the homogeneity of the laser additively manufactured aluminium alloy microstructure and grain refinement. In terms of mechanical properties
the laser additively manufactured aluminium alloys show excellent mechanical properties due to their fine grain size
and it is pointed out that the properties of the aluminium alloys can be further improved by optimizing the process parameters. Finally
it is pointed out that laser additively manufactured aluminium alloys still face challenges in controlling defects such as porosity and cracks
and future development directions are proposed.
YU Mao , HUI Chen , JUN Xiong . Research progress in laser additive manufacturing of aluminum alloys: Microstructure, defect, and properties [J]. Journal of Materials Research and Technology , 2024 , 30 : 695 - 716 .
左为 . TIG-MIG复合电弧增材制造散热器用铝合金工艺及组织与性能研究 [D]. 太原 : 太原理工大学 , 2018 .
ZUO W . TIG-MIG Composite Arc Additive Manufacturing of Aluminium Alloys for Heat Sinks and Study of Their Organisation and Properties [D]. Taiyuan : Taiyuan University of Technology , 2018 .
刘辰辰 , 陈亚军 , 李柯 , 等 . 7075航空铝合金原位腐蚀—多轴疲劳行为分析 [J]. 中国机械工程 , 2019 , 30 ( 5 ): 615 - 621 .
LIU C C , CHEN Y J , LI K , et al . In-situ corrosion-multi-axial fatigue behaviour analysis of 7075 aerospace aluminium alloy [J]. China Mechanical Engineering , 2019 , 30 ( 5 ): 615 - 621 .
文超 , 朱正锋 , 王群 , 等 . 7XXX系超高强铝合金在我国轨道交通车辆的研究应用现状与展望 [J]. 金属热处理 , 2024 , 49 ( 3 ): 302 - 312 .
WEN C , ZHU Z F , WANG Q , et al . Current status and outlook of the research application of 7XXX ultra-high-strength aluminium alloy in China's rail transit vehicles [J]. Metal Heat Treatment , 2024 , 49 ( 3 ): 302 - 312 .
胡家乐 , 周超群 , 王巧玉 , 等 . 汽车用轻量化材料的研究进展 [J]. 湖南工程学院学报 , 2024 , 34 ( 1 ): 25 - 33 .
HU J L , ZHOU C Q , WANG Q Y , et al . Research progress of lightweight materials for automobiles [J]. Journal of Hunan Engineering Institute , 2024 , 34 ( 1 ): 25 - 33 .
殷至豪 , 孙哲诚 , 马正茁 , 等 . 饱和NaCl溶液中铝合金的腐蚀特性及腐蚀预测模型研究 [J]. 材料保护 , 2024 , 57 ( 4 ): 90 - 113 .
YIN Z H , SUN Z C , MA Z Z , et al . Corrosion characteristics and corrosion prediction model of aluminium alloy in saturated NaCl solution [J]. Material Protection , 2024 , 57 ( 4 ): 90 - 113 .
Wei H L , Mukherjee T , Zhang W , et al . Mechanistic models for additive manufacturing of metallic components [J]. Progress On Materials Science , 2021 , 116 : 100703 .
Hyer H , Newell R , Matejczyk D , et al . Microstructural development in as built and heat treated IN625 component additively manufactured by laser powder bed fusion [J]. Journal Of Phase Equilibria And Diffusion , 2021 , 42 ( 1 ): 14 - 27 .
WU J , WANG X Q , WANG W , et al . Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Materialia , 2016 , 117 : 311 - 320 .
WEI Pei , CHEN Zhen , ZHANG Shuzhe , et al . Microstructure and mechanical properties of graphene and nano-zirconia reinforced AlSi10Mg composite fabricated by laser powder bed fusion [J]. Materials Science And Engineering a-Structural Materials Properties Microstructure And Processing , 2023 , 864 : 144574 .
Liu Mengna , Wei Kaiwen , Zeng Xiaoyan . High power laser powder bed fusion of AlSi10Mg alloy: effect of layer thickness on defect, microstructure and mechanical property [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2022 , 842 : 143107 .
Gao C , Wu W , Shi J , et al . Simultaneous enhancement of strength,ductility,and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J]. Additive Manufacturing , 2020 , 34 : 101378 .
Hadadzadeh A , Amirkhiz B S , Mohammadi M . Contribution of Mg2Si precipitates to the strength of direct metal laser sintered AlSi10Mg [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2019 , 739 : 295 - 300 .
Bai Yuchao , Yang Yongqiang , Xiao Zefeng , et al . Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting [J]. Materials & Design , 2018 , 140 : 257 - 266 .
Aboulkhair N T , Tuck C , Ashcroft I , et al . On the precipitation hardening of selective laser melted AlSi10Mg [J]. Metallurgical And Materials Transactions a-Physical Metallurgy And Materials Science , 2015 , 46 ( 8 ): 3337 - 3341 .
Fousova M , Dvorsky D , Michalcova A , et al . Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures [J]. Materials Characterization , 2018 , 137 : 119 - 126 .
WANG Caimei , JIANG Ziqun , MA Xiaoyv , et al . Effect of solid solution time on microstructure and corrosion property of wire arc additively manufactured 2319 aluminum alloy [J]. Journal Of Materials Research And Technology , 2023 , 26 : 2749 - 2758 .
Lombardi A , Sediako D , Ravindran C , et al . Analysis of precipitation,dissolution and incipient melting of Al 2 Cu in B206 Al alloy using in-situneutron diffraction [J]. Journal Of Alloys And Compounds , 2019 , 784 : 1017 - 1025 .
Liu Y , Teng F , Cao F H , et al . Defective GP-zones and their evolution in an Al-Cu-Mg alloy during high-temperature aging [J]. Journal Of Alloys And Compounds , 2019 , 774 : 988 - 996 .
Sha G , Marceau R K W , Gao X , et al . Nanostructure of aluminium alloy 2024: segregation, clustering and precipitation processes [J]. Acta Materialia , 2011 , 59 ( 4 ): 1659 - 1670 .
ZHANG Hu , ZHU Haihong , QI Ting , et al . Selective laser melting of High Strength Al-Cu-Mg alloys:Processing, microstructure and mechanical properties [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2016 , 656 : 47 - 54 .
Hung C H , LI Ying qi , Sutton A , et al . Aluminum Parts Fabricated by Laser-Foil-Printing Additive Manufacturing:Processing,Microstructure,and Mechanical Properties [J]. Materials , 2020 , 13 ( 2 ): 414 .
GU Tao , CHEN Bo , TAN Caiwang , et al . Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy [J]. Optics & Laser Technology , 2019 , 112 : 140 - 50 .
Clare A T , Mishra R S , Merklein M , et al . Alloy design and adaptation for additive manufacture [J]. Journal Of Materials Processing Technology , 2022 , 299 : 117358 .
Aboulkhair N T , Simonelli M , Parry L , et al . 3D printing of Aluminium alloys:Additive Manufacturing of Aluminium alloys using selective laser melting [J]. Progress in Materials Science , 2019 , 106 : 100578 .
ZHANG Douyao , Prasad A , Bermingham M J , et al . Grain Refinement of Alloys in Fusion-Based Additive Manufacturing Processes [J]. Metallurgical and Materials Transactions A , 2020 , 51 ( 9 ): 4341 - 4359 .
TAN Qiyang , ZHANG Jing qi , SUN Qiang , et al . Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles [J]. Acta Materialia , 2020 , 196 : 1 - 16 .
ZHANG Hu , ZHU Haihong , NIE Xiaojian , et al . Effect of Zirconium addition on crack,microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy [J]. Scripta Materialia , 2017 , 134 : 6 - 10 .
Ahuja B , Karg M , Nagulin K Y , et al . Fabrication and Characterization of High Strength Al-Cu Alloys Processed Using Laser Beam Melting in Metal Powder Bed [J]. Physics Procedia , 2014 , 56 : 135 - 146 .
Karg M C H , Ahuja B , Wiesenmayer S V , et al . Effects of Process Conditions on the Mechanical Behavior of Aluminium Wrought Alloy EN AW-2219 (AlCu6Mn) Additively Manufactured by Laser Beam Melting in Powder Bed [J]. Micromachines , 2017 , 8 ( 1 ): 23 .
Gharbi O , Jiang D , Feenstra D R , et al . On the corrosion of additively manufactured aluminium alloy AA2024 prepared by selective laser melting [J]. Corrosion Science , 2018 , 143 : 93 - 106 .
Casati R , Lemke J N , Alarcon A Z , et al . Aging Behavior of High-Strength Al Alloy 2618 Produced by Selective Laser Melting [J]. Metallurgical and Materials Transactions A , 2017 , 48 ( 2 ): 575 - 579 .
SHI Yunjian , YANG Kun , Kairy S K , et al . Effect of platform temperature on the porosity,microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting [J]. Materials Science and Engineering:A , 2018 , 732 : 41 - 52 .
Croteau J R , Griffiths S , Rossell M D , et al . Microstructure and mechanical properties of Al-Mg-Zr alloys processed by selective laser melting [J]. Acta Materialia , 2018 , 153 : 35 - 44 .
Spierings A B , Dawson K , Heeling T , et al . Microstructural features of Sc- and Zr-modified Al-Mg alloys processed by selective laser melting [J]. Materials & Design , 2017 , 115 : 52 - 63 .
WANG Zhihong , LIN Xin , KANG Nan , et al . Directed energy deposition additive manufacturing of a Sc/Zr-modified Al-Mg alloy:effect of thermal history on microstructural evolution and mechanical properties [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2021 , 802 : 140606 .
YANG Qi , ZHANG Hu , NIE Xiaojia . A high strength Al-Li alloy produced by laser powder bed fusion: densification,microstructure,and mechanical properties [J]. Additive Manufacturing , 2020 , 35 : 101346 .
Raffeis I , Adjei-Kyeremeh F , Vroomen U . Characterising the Microstructure of an Additively Built Al-Cu-Li Alloy [J]. Materials , 2020 , 13 ( 22 ): 5188 .
YANG Qi , HU Zhiheng , ZHANG Hu , et al . High strength Al-Li alloy development for laser powder bed fusion [J]. Additive Manufacturing , 2021 , 47 : 102249 .
JIAO Shikun , CHENG Xu , SHEN Shunxin , et al . Microstructure evolution and mechanical behavior of Al-Li alloy fabricated by laser melting deposition technique [J]. Journal Of Alloys And Compounds , 2020 , 821 : 153125 .
GU Xinhui , ZHANG Junxin , FAN Xiaolei , et al . Abnormal corrosion behavior of selective laser melted AlSi10Mg Alloy Induced by Heat Treatment at 300°C [J]. Journal Of Alloys And Compounds , 2019 , 803 : 314 - 324 .
Cabrini M , Calignano F , Fino P , et al . Corrosion Behavior of Heat-Treated AlSi10Mg Manufactured by Laser Powder Bed Fusion [J]. Materials , 2018 , 11 ( 7 ): 1051 .
Cabrini M , Lorenzi S , Pastore T , et al . Effect of Heat Treatment on Corrosion Resistance of DMLS AlSi10Mg Alloy [J]. Electrochimica Acta , 2016 , 206 : 346 - 355 .
GU Xinhui , ZHANG Junxin , Fan Xiaolei , et al . Abnormal corrosion behavior of selective laser melted AlSi10Mg alloy induced by heat treatment at 300 ℃ [J]. Journal Of Alloys And Compounds , 2019 , 803 : 314 - 324 .
王成磊 , 高原 , 张光耀 . CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响 [J]. 稀有金属材料与工程 , 2017 , 46 ( 8 ): 2306 - 2312 .
WANG C L , GAO Y , ZHANG G Y . Effect of CeO2 on the organisation and corrosion resistance of Ni60 alloy layer fabricated by laser fusion additive manufacturing on aluminium alloy surface [J]. Rare Metal Materials and Engineering , 2017 , 46 ( 8 ): 2306 - 2312 .
Leon A , Shirizly A , Aghion E . Corrosion Behavior of AlSi10Mg Alloy Produced by Additive Manufacturing (AM) vs. Its Counterpart Gravity Cast Alloy [J]. Metals , 2016 , 6 ( 7 ): 148 .
YANG Yan , CHEN Yang , ZHANG Junxin , et al . Improved Corrosion Behavior of Ultrafine-grained Eutectic Al-12Si Alloy Produced by Selective Laser Melting [J]. Materials & Design , 2018 , 146 : 239 - 248 .
Chasse K R , Rajendran R , Owens C T , et al . Stress Corrosion Cracking Susceptibility of Additively Manufactured Aluminum Alloy 7050 Produced by Selective Laser Melting in Chloride Environments [J]. Journal Of Materials Engineering And Performance , 2021 , 30 ( 9 ): 7046 - 7056 .
ZHANG Jinliang , YE Jieliang , SONG Bo , et al . Comparative study on microstructure and electrochemical corrosion resistance of Al7075 alloy prepared by laser additive manufacturing and forging technology [J]. Journal Of Central South University , 2021 , 28 ( 4 ): 1058 - 1067 .
Fathi P , Rafieazad M , Duan X , et al . On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering [J]. Corrosion Science , 2019 , 157 : 126 - 145 .
奥妮 , 何子昂 , 吴圣川 , 等 . 激光增材制造AlSi10Mg合金的力学性能研究进展 [J]. 焊接学报 , 2022 , 43 ( 9 ): 1 - 19 .
AO N , HE Z A , WU S C , et al . Progress in the study of mechanical properties of laser additively manufactured AlSi10Mg alloy [J]. Transactions of The China Welding Institution , 2022 , 43 ( 9 ): 1 - 19 .
ZHANG Han , DAI Donghua , YUAN Luhao , et al . Temperature gradient induced tough brittle transition behavior of a high-strength Al-4.2Mg-0.4Sc-0.2Zr alloy fabricated by laser powder bed fusion additive manufacturing [J]. Additive Manufacturing , 2023 , 73 : 103655 .
ZHAO Lv , SONG Lubin , Macias JGS , et al . Review on the correlation between microstructure and mechanical performance for laser powder bed fusion AlSi10Mg [J]. Additive Manufacturing , 2022 , 56 : 102914 .
Fribourg G , Br´echet Y , Deschamps A , et al . Microstructure based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy [J]. Acta Materialia , 2011 , 59 ( 9 ): 3621 - 3635 .
Brandao A D , Gumpinger J , Gschweitl M , et al . Fatigue properties of additively manufactured AlSi10Mg-surface treatment effect [J]. Procedia Structural Integrity , 2017 , 7 : 58 - 66 .
Jian Z M , Qian G A , Paolino D S , et al . Crack initiation behavior and fatigue performance up to very-high-cycle regime of AlSi10Mg fabricated by selective laser melting with two powder sizes [J]. International Journal Of Fatigue , 2021 , 143 : 106013 .
XIAO Fei , WANG Sunbin , WANG Yixiao , et al . Niobium nanoparticle-enabled grain refinement of a crack-free high strength Al-Zn-Mg-Cu alloy manufactured by selective laser melting [J]. Journal Of Alloys And Compounds , 2022 , 900 : 163427 .
Mehta A , Zhou L , Huynh T , et al . Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion [J]. Additive Manufacturing , 2021 , 41 : 101966 .
Wang Z H , Lin X , Kang N , et al . Directed energy deposition additive manufacturing of a Sc/Zr-modified Al-Mg alloy:effect of thermal history on microstructural evolution and mechanical properties [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2021 , 802 : 140606 .
YANG Feipeng , WANG Jianying , WEN Tao , et al . Developing a novel high-strength Al-Mg-Zn-Si alloy for laser powder bed fusion [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2022 , 851 : 143636 .
LI Pengxu , CAI Rui , YANG Guang , et al . Mechanically strong,stiff,and yet ductile AlSi7Mg/graphene composites by laser metal deposition additive manufacturing [J]. Mater. Sci. Eng. A , 2021 , 823 : 141749 .
Suzuki A , Miyasaka T , Takata N , et al . Control of microstructural characteristics and mechanical properties of AlSi12 alloy by processing conditions of laser powder bed fusion [J]. Additive Manufacturing , 2021 ,48(a):102383.
GONG Jianqiang , WEI Kaiwen , LIU Mengna , et al . Microstructure and mechanical properties of AlSi10Mg alloy built by laser powder bed fusion/direct energy deposition hybrid laser additive manufacturing [J]. Additive Manufacturing , 2022 ,59(a):103160.
WANG Minbo , LI Ruidi , YUAN Tiechui , et al . The evolution of quasicrystal during additive manufacturing and aging treatment of a Si-modified Al-Mn-Sc alloy [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2022 , 859 : 144206 .
Schliephake D , Lopes C , Eggeler Y M , et al . Improved work hardening capability and ductility of an additively manufactured and deformed Al-Mn-Mg-Sc-Zr alloy [J]. Journal Of Alloys And Compounds , 2022 , 924 : 166499 .
LU Jinglin , LIN Xin , KANG Nan , et al . Characterizations of micro-nano structure and tensile properties of a Sc modified Al-Mn alloy fabricated by selective laser melting [J]. Materials Characterization , 2021 , 178 : 111305 .
JIANG Wei , GUO Xiaobin , DENG Yunlaiet al . Anisotropic response in mechanical behavior of additively manufactured Al-Mn-Sc alloys by in-situ EBSD tensile tests [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2022 , 858 : 144155 .
Belelli F , Casati R , Larini F , et al . Investigation on two Ti-Breinforced Al alloys for laser powder bed fusion [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2021 , 808 : 140944 .
WANG Jianhong , ZHANG Shuanglei , LU Renyi , et al . A crack-free and high-strength Al-Cu-Mg-Mn-Zr alloy fabricated by laser powder bed fusion [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2022 , 854 : 143731 .
GU Tao , CHEN Bo , TAN Caiwang , et al . Microstructure evolution and mechanical properties of laser additive manufacturing of high strength Al-Cu-Mg alloy [J]. Optics And Laser Technology , 2019 , 112 : 140 - 150 .
Rao J H , ZHANG Yong , ZHANG Kai , et al . Multiple precipitation pathways in an Al-7Si-0.6Mg alloy fabricated by selective laser melting [J]. Scripta Materialia , 2019 , 160 : 66 - 69 .
Rao J H , Rometsch P , Wu X , et al . 7-The processing and heat treatment of selective laser melted Al-7Si-0.6Mg alloy [J]. Additive Manufacturing for the Aerospace Industry , 2019 : 143 - 161 .
Rosenthal I , Shneck R , Stern A . Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by additive manufacturing selective laser melting process [J]. Materials Science and Engineering:A , 2018 , 729 : 310 - 322 .
SHI Yunjia , YANG Kun , Kairy S K , et al . Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al-Mg-Sc-Zr alloy fabricated by selective laser melting [J]. Materials Science and Engineering:A , 2018 , 732 : 41 - 52 .
Siddique S , Imran M , Wycisk E , et al . Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting [J]. Journal of Materials Processing Technology , 2015 , 221 : 205 - 213 .
Siddique S , Imran M , Walther F . Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy [J]. International Journal of Fatigue , 2017 , 94 : 246 - 254 .
Prashanth K G , Scudino S , Klauss H J , et al . Microstructure and mechanical properties of Al-12Si produced by selective laser melting: Effect of heat treatment [J]. Materials Science and Engineering:A , 2014 , 590 : 153 - 160 .
WU J , WANG X Q , WANG W , et al . Microstructure and strength of selectively laser melted AlSi10Mg [J]. Acta Materialia , 2016 , 117 : 311 - 320 .
Buchbinder D , Meiners W , Wissenbach K , et al . Selective laser melting of aluminum die-cast alloy-Correlations between process parameters,solidification conditions,and resulting mechanical properties [J]. Journal of Laser Applications , 2015 , 27 ( S1 ): 29205 .
Galy C , Le Guen E , Lacoste E , et al . Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences [J]. Additive Manufacturing , 2018 , 22 : 165 - 175 .
CAO Y , WEI H L , YANG T , et al . Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion [J]. Additive Manufacturing , 2021 , 46 : 102103 .
Mower T M , Long M J . Mechanical behavior of additive manufactured, powder-bed laser-fused materials [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2016 , 651 : 198 - 213 .
Yang K V , Rometsch P , Jarvis T . Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing , 2018 , 712 : 166 - 174 .
KAN Wenhao , Nadot Y , Foley M , et al . Factors that affect the properties of additively-manufactured AlSi10Mg:porosity versus microstructure [J]. Additive Manufacturing , 2019 , 29 : 100805 .
Huang Y Z , Fleming T G , Clark S J , et al . Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing [J]. Nature Communications , 2022 , 13 ( 1 ): 1170 .
Kou S . A criterion for cracking during solidification [J]. Acta Materialia , 2015 , 88 : 366 - 374 .
Wei H L , Elmer J W , DebRoy , et al . Three dimensional modeling of grain structure evolution during welding of an aluminum alloy [J]. Acta Materialia , 2017 , 126 : 413 - 425 .
Chen C M , Kovacevic R . Finite element modeling of friction stir welding-thermal and thermomechanical analysis [J]. International Journal Of Machine Tools And Manufacture , 2003 , 43 : 1319 - 1326 .
相关作者
相关机构