真空电子束熔覆装备研制
Research and Development of Vacuum Electron Beam Cladding Equipment
- 2025年55卷第1期 页码:65-72
纸质出版日期: 2025-01-20
DOI: 10.7512/j.issn.1001-2303.2025.01.09
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2025-01-20 ,
移动端阅览
张博,侯宇博,徐晓龙,等.真空电子束熔覆装备研制[J].电焊机,2025,55(1):65-72.
ZHANG Bo, HOU Yubo, XU Xiaolong, et al.Research and Development of Vacuum Electron Beam Cladding Equipment[J].Electric Welding Machine, 2025, 55(1): 65-72.
围绕真空电子束熔覆装备战略需求,聚焦核心功能零部件的研制开发。研究电子束枪技术、机械运动机构及控制技术,真空定量送粉技术等关键技术。电子束熔覆装备由电子束枪系统、机械运动及控制系统、真空系统、真空送粉系统、监视系统、PLC总控系统等组成。研制等离子体空心阴极结构的电子束枪,实现电子束在低真空条件下的正常工作,阴极连续工作时间可超过50 h,适合送粉式电子束熔覆及增材制造。优化电磁聚焦系统的设计,通过调整磁场分布来控制电子束的聚焦程度。通过聚焦系统保证电子束流良好的聚焦电流稳定性,聚焦电流测量值较设定值偏差≤0.5%。研究实现了五轴联动运动机构及数控系统,实现空间复杂曲面的熔覆及增材。研究了抽真空及真空送粉系统,实现连续可控送粉。通过PLC控制系统将电子枪、真空系统、运动系统等与控制系统进行集成,进行整体调试和优化。解决系统运行中可能出现的兼容性和稳定性问题。实现上述关键技术的突破,是实现电子束熔覆装备国产化集成制造的必要条件。
Focusing on the strategic requirements of vacuum electron beam cladding equipment and the research and development of core functional components. Study on key technologies such as electron beam gun technology
mechanical motion mechanism and control technology
and vacuum quantitative powder feeding technology. The electron beam cladding equipment consists of an electron beam gun system
mechanical motion and control system
vacuum system
vacuum powder feeding system
monitoring system
PLC control system
etc. Develop an electron beam gun with a plasma hollow cathode structure to achieve normal operation of the electron beam under low vacuum conditions. The continuous working time of the cathode can exceed 50 hours
making it suitable for electron beam cladding and additive manufacturing. Optimize the design of the electromagnetic focusing system by adjusting the magnetic field distribution to control the focusing degree of the electron beam. The focusing system ensures good focusing current stability of the electron beam
and the deviation of the measured focusing current from the set value is ≤ 0.5%. Research and Development of the five axis linkage motion mechanism and numerical control system
which enables the fusion and additive manufacturing of complex spatial surfaces. Studied the vacuum pumping and vacuum powder feeding system to achieve continuous and controllable powder feeding. Integrate electronic guns
vacuum systems
motion systems
etc. with the control system through PLC control system for overall debugging and optimization. Resolve compatibility and stability issues that may arise during system operation.The breakthrough in the above-mentioned key technologies is a necessary condition for the localization and integrated manufacturing of electron beam cladding equipment.
陈健 , 刘海浪 , 卢儒学 , 等 . 电子束熔覆工艺对合金表面改性的研究现状 [J]. 热加工工艺 , 2021 , 50 ( 9 ): 30 - 33+38 .
CHEN J , LIU H L , LU R X , et al . Research Status of Surface Modification of Alloy by Electron Beam Cladding Process [J]. Hot Working Technology , 2021 , 50 ( 9 ): 30 - 33+38 .
张伏 , 王凤娟 , 郝建军 , 等 . 三束表面改性技术的应用及发展趋势 [J]. 河北农业大学学报 , 2003 ( S1 ): 260 - 263+266 .
ZHANG F , WANG F J , HAO J J , et al . The application and development trend of surface modification technique induced by three beams [J]. Journal Of Agricultural University of Hebei , 2003 ( S1 ): 260 - 263+266 .
董书恒 . 强流脉冲电子束作用下部分Cu基粉末冶金材料的表面合金化 [D]. 江苏 : 江苏大学 , 2018 .
DONG . Surface Alloying of Some Cu-Based Powder Metallurgy Materials by High Current Pulsed Electron
Beam [D]. Jiangsu : Jiangsu University , 2018 .
卢儒学 , 刘海浪 , 王小宇 , 等 . 电子束熔覆技术的研究现状与发展 [J]. 热加工工艺 , 2022 , 51 ( 08 ): 15 - 19+25 .
LU R X , LIU H L , WANG X Y , et al . Research Status and Development of Electron Beam Cladding Technology [J]. Hot Working Technology , 2022 , 51 ( 08 ): 15 - 19+25 .
曾壮基 , 刘海浪 , 陈健 , 等 . 电子束熔覆表面改性层金相组织的研究进展 [J]. 热加工工艺 , 2023 , 52 ( 24 ): 1 - 4+14 .
ZENG Z J , LIU H L , CHEN J , et al . Research Progress on Metallographic Structure of Electron Beam Cladding Surface Modified Layer [J]. Hot Working Technology , 2023 , 52 ( 24 ): 1 - 4+14 .
李生志 , 李玉海 , 许婷婷 . 高速钢M2强流脉冲电子束表面改性研究 [J]. 表面技术 , 2009 , 38 ( 06 ): 24 - 26+59 .
LI S Z , LI Y H , XU T T , et al . Surface Modification of High-speed SteelM 2 by HCPEB [J]. Surface Technology , 2009 , 38 ( 06 ): 24 - 26+59 .
马壮 , 董书琳 , 董世知 , 等 . 纯铜表面火焰喷涂陶瓷/渗铝复合层及其性能 [J]. 材料保护 , 2012 , 45 ( 24 ): 59 - 61+68 .
MA Z , DONG S L , DONG S Z , et al . Flame Spraying Ceramic/Aluminized Composite Layer on Pure Copper Surface and Its Properties [J]. Materials Protection , 2012 , 45 ( 24 ): 59 - 61+68 .
付福兴 , 畅庚榕 , 赵小侠 , 等 . 激光光斑直径对熔覆层裂纹的影响 [J]. 激光与光电子学进展 , 2015 , 52 ( 03 ): 184 - 187 .
FU F X , CHANG G R , ZHAO X X , et al . Influence of Laser Spot Diameter on Cladding Layer Cracking [J]. Laser & Optoelectronics Progress , 2015 , 52 ( 03 ): 184- 187.
Węglowski M S , Błacha S , Phillips A . Electron beam welding-Techniques and trends-Review [J]. Vacuum , 2016 , 130 : 72 - 92 .
Oks E . Plasma cathode electron sources: physics, technology,applications [M]. John Wiley & Sons , 2006 .
Kapil S , Kulkarni P , Joshi P , et al . Retrofitment of a CNC machine for omni-directional tungsten inert gas cladding [J]. Virtual and Physical Prototyping , 2019 , 14 ( 3 ): 293 - 306 .
Kolubaev A V , Tarasov S Y , Filippov A V , et al . The features of structure formation in chromium-nickel steel manufactured by a wire-feed electron beam additive process [J]. Russian Physics Journal , 2018 , 61 : 1491 - 1498 .
Kovalchuk D , Ivasishin O . Profile electron beam 3D metal printing [M]. Additive Manufacturing for the Aerospace Industry . Elsevier , 2019 : 213 - 233 .
Guo C , Ge W , Lin F . Dual-material electron beam selective melting: hardware development and validation studies [J]. Engineering , 2015 , 1 ( 1 ): 124 - 130 .
相关文章
相关作者
相关机构