熔滴过渡模式对药芯焊丝与实心焊丝焊接烟尘的影响研究
Research on the Influence of Metal Transition Mode on Welding Fume between Flux Cored Wire and Solid Wire
- 2025年55卷第1期 页码:28-34
纸质出版日期: 2025-01-20
DOI: 10.7512/j.issn.1001-2303.2025.01.04
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2025-01-20 ,
移动端阅览
李春凯,黄志扬,丁彬,等.熔滴过渡模式对药芯焊丝与实心焊丝焊接烟尘的影响研究[J].电焊机,2025,55(1):28-34.
LI Chunkai, HUANG Zhiyang, DING Bin, et al.Research on the Influence of Metal Transition Mode on Welding Fume between Flux Cored Wire and Solid Wire[J].Electric Welding Machine, 2025, 55(1): 28-34.
在熔化极气体保护焊焊接过程中,不同的熔滴过渡模式会导致焊接烟尘产生的冶金机制发生改变。系统研究了采用实心焊丝和药芯焊丝的熔化极气体保护焊熔滴过渡模式与焊接烟尘之间的相关性。利用熔滴过渡采集系统拍摄了两种焊丝在不同工艺下的熔滴过渡模式,并采用烟尘采集装置和激光粒度分析仪分析了不同熔滴过渡模式下的焊接烟尘发尘量和烟尘粒径分布规律。结果表明,实心焊丝在短路过渡和射滴过渡模式下,烟尘发尘量与熔滴过渡频率成正比,而大滴过渡模式下则呈现出反比规律;药芯焊丝的烟尘发尘量与熔滴过渡频率成正比关系;实心焊丝的烟尘颗粒粒径分布范围为0.1~10 μm之间且大尺寸颗粒主要分布在短路过渡区间;而药芯焊丝的烟尘粒径主要分布在0.1~100 μm之间,大尺寸颗粒主要分布在短路和大滴过渡区间。
During the welding process of melt inert-gas welding(MIG welding)
different metal transfer behaviors may affect the metallurgical process of welding fume generation. For this purpose
a systematic study was conducted on the correlation between the metal transition mode of MIG welding using solid core welding wire and flux core welding wire and welding fume. The metal transition modes of two types of welding wires under different processes were captured using a metal transition collection system
and the amount and particle size distribution of welding fume under different metal transition modes were analyzed using a fume collection device and a laser particle size analyzer. The results show that the total amount of fumes by solid wire is directly proportional to the frequency of metal transition in short-circuit transition and spray transition modes
while in globular transition mode
it exhibits an inverse law; The total amount of fumes by flux cored welding wire is directly proportional to the frequency of metal transition. The particle diameter of fumes in solid wire welding is mainly distributed between 0.1~10 μm
there are a large number of large-sized fume particles in the short circuit transition welding process. The fume particle diameter of flux cored welding wire is mainly distributed between 0.1 and 100 μm
large particles are mainly distributed during short circuits and globular droplet transitions.
Antonini J M , Lewis A B , Roberts J R , et al . Pulmonary effects of welding fumes:Review of worker and experimental animal studies [J]. American Journal of Industrial Medicine , 2003 , 43 ( 4 ): 350 - 360 .
Block M L , Calderón-Garcidueñas L . Air pollution: mechanisms of neuroinflammation and CNS disease [J]. Trends in Neurosciences , 2009 , 32 ( 9 ): 506 - 516 .
Hedberg Y S , Wei Z , Mccarrrick S , et al . Welding fume nanoparticles from solid and flux-cored wires: solubility,toxicity,and role of fluorides [J]. Journal of Hazardous Materials , 2021 , 413 : 125273 .
Pires I , Quintino L , Amaral V , et al . Reduction of fume and gas emissions using innovative gas metal arc welding variants [J]. International Journal of Advanced Manufacturing Technology , 2010 , 50 ( 5-8 ): 557 - 567 .
Pires I , Quintino L , Miranda R M , et al . Fume emissions during gas metal arc welding [J]. Toxicological & Environmental Chemistry Reviews , 2006 , 88 ( 1/4 ): 385 - 394 .
Sivapirakasam S P , Mohan S , Kumar M , et al . Welding fume reduction by nano-alumina coating on electrodes-towards green welding process [J]. Journal of Cleaner Production , 2015 , 108 : 131 - 44 .
Mccarrick S , Romanovski V , Wei Z , et al . Genotoxicity and inflammatory potential of stainless steel welding fume particles: an in vitro study on standard vs Cr (VI)-reduced flux-cored wires and the role of released metals [J]. Archives of toxicology , 2021 , 95 ( 9 ): 2961 - 2975 .
Westin E M , Maccarrick S , Laundry-mottiar L , et al . New weldable 316L stainless flux-cored wires with reduced Cr (VI) fume emissions: part 1—health aspects of particle composition and release of metals [J]. Welding in the World , 2021 , 65 ( 12 ): 2319 - 2337 .
North T H , Mott L E . Welding electrode and method for reducing manganese in fume : US20020153364A1 [P].
Scotti A , Meneses V A D . Governing parameters affecting fume generation in short-circuit MAG welding [J]. Welding in World , 2014 , 58 ( 3 ): 367 - 376 .
朱珍文 , 石玗 , 顾玉芬 , 等 . 焊接烟尘的危害及综合治理研究现状 [J]. 电焊机 , 2022 , 52 ( 5 ): 1 - 12 .
ZHU Z W , SHI Y , GU Y F , et al . Research Status of Harm and Comprehensive Treatment of Welding Fume [J]. Electric Welding Machine , 2022 , 52 ( 5 ): 1 - 12 .
许芙蓉 , 杨立军 . 直流MIG焊焊接烟尘粒度分析 [J]. 自动化与仪器仪表 , 2013 ( 5 ): 145 - 146 .
XU F R , YANG L J . An approach on DC MIG welding fume particle size [J]. Automation &amp Instrumentation , 2013 ( 5 ): 145 - 146 .
薛铜辉 . 不锈钢药芯焊丝焊接烟尘的研究 [D]. 山西 : 中北大学 , 2018 .
XUE T H . Research on welding fume of stainless steel cored wire [D]. Shanxi : North University of China , 2018 .
Quimby B J , Ulrich G D . Fume formation rates in gas metal arc welding [J]. Welding Journal (Miami,Fla) , 1999 , 84 ( 4 ): 142 - 149 .
Pires I , Quintino L , Miranda R . Analysis of the influence of shielding gas mixtures on the gas metal arc welding metal transfer modes and fume formation rate [J]. Materials &amp design , 2007 , 28 ( 5 ): 1623 - 1631 .
相关作者
相关机构