双丝脉冲MIG电弧与熔池传热传质数值模拟
Numerical Simulation of Heat and Mass Transfer between Double-Wire Pulsed MIG Arc and Molten Pool
- 2024年54卷第12期 页码:49-55
纸质出版日期: 2024-12-25
DOI: 10.7512/j.issn.1001-2303.2024.12.08
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-12-25 ,
移动端阅览
申孟伟,陈毅腾,梁志敏,等.双丝脉冲MIG电弧与熔池传热传质数值模拟[J].电焊机,2024,54(12):49-55.
SHEN Mengwei, CHEN Yiteng, LIANG Zhimin, et al.Numerical Simulation of Heat and Mass Transfer between Double-Wire Pulsed MIG Arc and Molten Pool[J].Electric Welding Machine, 2024, 54(12): 49-55.
分别建立了双丝脉冲MIG的电弧模型和熔滴-熔池耦合模型,并考虑焊丝之间的相互作用,定量分析了双丝脉冲MIG焊接过程中的电弧物理行为和熔池的传热传质,揭示双丝焊接过程中的熔化和传热传质机理。结果表明,双丝脉冲MIG的电弧等离子体之间存在的电磁力使电弧偏转,并向两焊丝之间集中,从而增加对熔池的搅拌作用;前后两焊丝形成的热源可增加熔深和熔宽,且熔滴交替滴落的方式有利于熔池稳定;熔滴在过渡至熔池表面时,由于表面张力和重力的作用,其速度会突增,对熔池造成更强烈的冲击效应;熔池前端的流动性大于熔池后端,熔滴过渡对熔池流动的影响最为显著,其次是表面张力的影响。
A dual-wire pulsed MIG arc model and a droplet-molten pool coupling model were established
taking into account the interaction between the welding wires. The physical behavior of the arc and the heat and mass transfer of the molten pool during the dual-wire pulsed MIG welding process were quantitatively analyzed
revealing the melting and heat and mass transfer mechanisms in the dual-wire welding process. The results show that the electromagnetic force existing between the plasma arcs of the dual-wire pulsed MIG causes the arc to deflect and concentrate between the two welding wires
thereby increasing the stirring effect on the molten pool. The heat sources formed by the front and rear welding wires can increase the depth and width of the melt
and the alternating droplet falling method is conducive to the stability of the molten pool. When the droplets transition to the surface of the molten pool
their speed will surge due to the effects of surface tension and gravity
causing a more intense impact effect on the molten pool. The fluidity at the front end of the molten pool is greater than that at the rear end
and the influence of droplet transition on the flow of the molten pool is the most significant
followed by the influence of surface tension.
双丝焊电弧熔滴过渡传热传质流场
double-wire MIG weldingwelding arcdroplet transferheat and mass transferflow field
Köhler M,Fiebig S,Hensel J,et al. Wire and arc additive manufacturing of aluminum components[J]. Metals,2019,9(5):608.
周彦彬,史维琴. 双电弧高效焊接技术研究与发展现状[J]. 电焊机,2019,49(12):44-51.
ZHOU Y B,SHI W Q. Development of double arc high efficiency welding technology[J]. Electric Welding Machine,2019,49(12):44-51.
Zhao W Y,Wei Y H,Long J W,et al. Modeling and simulation of heat transfer,fluid flow and geometry morphology in GMAW-based wire arc additive manufacturing[J]. Welding in the World,2021,65:1571-1590.
侯英杰,樊丁,黄健康. 高效GMAW潜弧焊电弧特性数值分析[J]. 电焊机,2022,52(3):11-19.
HOU Y J,FAN D,HUANG J K. Numerical analysis of arc characteristics of efficient GMAW buried-Arc welding[J]. Electric Welding Machine,2022,52(3):11-19.
徐洲,李晓延,吴奇,等. 基于组合热源模型的中厚板MIG 焊模拟[J]. 电焊机,2021,51(11):44-49.
XU Z,LI X Y,WU Q,et al. MIG welding simulation of medium plate based on combined heat source model[J]. Electric Welding Machine,2021,51(11):44-49.
Wang L,Chen J,Wu C S. Numerical investigation on the effect of process parameters on arc and metal transfer in magnetically controlled gas metal arc welding[J]. Journal of Materials Processing Technology,2020,282:116638.
张志强,勾青泽,刘博,等. 双相不锈钢脉冲电弧等离子体传热传质行为[J]. 中国表面工程,2023,36(6):195-204.
ZHANG Z Q,GOU Q Z,LIU B,et al. Heat and mass transfer behavior of pulsed arc plasma of duplex stainless steel[J]. China Surface Engineering,2023,36(6):195-204.
Zhao W Y,Tashiro S,Murphy A B,et al. Deepening the understanding of arc characteristics and metal properties in GMAW-based WAAM with wire retraction via a multi-physics model[J]. Journal of Manufacturing Processes,2023,97:260-274.
Zhao W Y,Wei Y H,Tashiro S,et al. Numerical investigations of arc plasma characteristic parameters evolution and metal properties in GMAW-based WAAM of Al alloy with an integrated model[J]. Journal of Manufacturing Processes,2023,99:321-337.
刘强,王国安,岳国柱. 双丝电弧焊熔滴过渡形式对熔池影响模拟研究[J]. 机械设计与制造,2021,364(6):1-5.
LIU Q,WANG G A,YUE G Z. Simulation study on influence of twin wire arc welding droplet transition form on molten pool[J]. Machinery Design and Manufacture,2021,364(6):1-5.
黄玺.大功率双丝脉冲MIG焊双脉冲传热数值模拟研究[D]. 广东:华南理工大学,2015.
HUANG X. Study on numerical simulation of dual pulse heat transfer of high-power twin-wire pulsed MIG welding[D]. Guangdong:South China University of Technology,2018.
Bai X,Colegrove P,Ding J,et al. Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing[J]. International Journal of Heat and Mass Transfer,2018,124:504-516.
Ogino Y,Asai S,Hirata Y. Numerical simulation of WAAM process by a GMAW weld pool model[J].Weld World,2018,62:393-401.
相关作者
相关机构