基于逆向重构的不规则缺陷电弧增材修复研究
Research on Wire Arc Additive Manufacturing in Repairing Irregular Defect based on Reverse Reconstruction
- 2024年54卷第11期 页码:113-119
纸质出版日期: 2024-11-25
DOI: 10.7512/j.issn.1001-2303.2024.11.15
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-11-25 ,
移动端阅览
高站起,杨延丽,段嘉旭,等.基于逆向重构的不规则缺陷电弧增材修复研究[J].电焊机,2024,54(11):113-119.
GAO Zhanqi, YANG Yanli, DUAN Jiaxu, et al.Research on Wire Arc Additive Manufacturing in Repairing Irregular Defect based on Reverse Reconstruction[J].Electric Welding Machine, 2024, 54(11): 113-119.
采用自制焊接材料,配合主要由Tardis激光视觉相机构成的智能视觉逆向重构系统和由ABB工业机器人、Fronius焊机等构成的电弧丝材增材系统进行人工制造不规则缺陷丝材增材制造修复试验,利用超声探伤、光学显微镜、扫描电子显微镜、能谱分析、性能测试等手段进行不规则缺陷电弧增材成形尺寸偏差、缺陷、组织及性能分析,对丝材电弧增材制造在大型部件不规则缺陷修复的产业化应用进行阐述。结果表明:缺陷深度在30 mm时,采用先边缘再内部填充的路径进行丝材电弧增材制造形成的熔覆金属在成形厚度上尺寸偏差为2 mm;在自动化修复过程中,针对该材料需要每层进行清渣以保证增材熔敷金属质量,避免夹渣缺陷出现;丝材电弧增材制造熔覆金属由铁素体和渗碳体组成,连续作业下不同层数熔覆金属因冷却速度其组织粗化程度差异较为明显,所修复的缺陷区域熔覆金属强度提高4%~5%,延伸率及冲击功下降4%~10%,整体上仍然较为接近焊接材料检验中纯熔覆金属性能。通过逆向重构和丝材电弧增材制造相结合,可以实现大型部件的大尺寸不规则缺修复应用。
Research on application of wire arc additive manufacture (WAAM) in repairing irregular defects of large parts was carried out with the intelligent visual reverse reconstruction system mainly composed of Tardis laser vision camera and the WAAM system mainly composed of ABB industrial robots
Fronius welder using welding materials made by ZRIME. Dimensional deviations
defects
microstructure and properties of the multi-layer deposited metal in the irregular area were investigated by UT
OM
SEM
EDS
and the practical application of wire arc additive manufacturing in repairing irregular defects of large parts was described.The results show that when the defect depth was 30 mm
there would be a 2 mm deviation in thickness of the deposited metal using edge to edge then internal filling path by WAAM
the deslagging was necessary for each layer in order to ensure the quality of deposited metal to avoid the slag
the difference of microstructural coarsening degree of deposited metal was obvious due to the cooling rate under almost continuous welding
the strength of cladding metal in the repaired defect area were increased by 4%~5%
and the elongation rate and impact absorbed energy were decreased by 4%~10%
and overall performance was still relatively close to the cladding metal performance in the inspection of welding materials.Through the reverse reconstruction system and WAAM system
large-scale irregular defects of large components could be repaired in industrial applications.
丝材电弧增材制造不规则缺陷修复
reverse reconstructionwire arc additive manufactureirregular defectrepair
江宏亮,姚巨坤,殷凤良. 丝材电弧增材制造技术的研究现状与应用[J]. 热加工工艺,2018,47(18):25-29.
JIANG H L,YAO J K,YIN F L. Research Status and Application of Wire Arc Additive Manufacturing Technology[J]. Hot Working Technology,2018,47(18):25-29.
王庭庭,张元彬,谢岳良. 丝材电弧增材制造技术研究现状及展望[J]. 电焊机,2017,47(08):60-64.
WANG T T,ZHANG Y B,XIE Y L. Status and development prospects of the wire arc additive manufacture technology[J]. Electric Welding Machine,2017,47(08):60-64.
丁华鹏. 航空发动机受损叶片逆向重构与激光熔覆技术研究[D]. 天津:中国民航大学,2016.
DING H P. Research on Model Reconstruction of Aero-Engine Damaged Blades and Laser Cladding[D]. Tianjin:Civil Aviation University of China,2016.
Gao J,Chen X,Yilmaz O,et al. An integrated adaptive repair solution for complex aerospace components through geometry reconstruction[J]. The International Journal of Advanced Manufacturing Technology,2007,36(11-12):170-1179
Yilmaz O,Gindy N,Gao J. A repair and overhaul methodology for aero-engine components[J]. Robotics and Computer-Integrated Manufacturing,2010,26(2):90-201
田彩兰,陈济轮,董鹏,等. 国外电弧增材制造技术的研究现状及展望[J]. 航天制造技术,2015(02):57-60.
TIAN C L,CHEN J L,DONG P,et al. Current State and Future Development of the Wire Arc Additive Manufacture Technology Abroad[J]. Aerospace Manufacturing Technology,2015(02):57-60.
王智慧,贺定勇,蒋建敏,等. Fe-Cr-C耐磨堆焊合金磨粒磨损行为[J]. 焊接学报,2010(11):73-76.
WANG Z H,HE D Y,JIANG J M,et al. Abrasive wear behavior of Fe-Cr-C hardfacing alloy[J]. Transactions of the China Welding Institution,2010(11):73-76.
Ding D H,Pan Z X,Cuiuri D,et al. A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM)[J]. Robotics and Computer Integrated Manufacturing,2015,31:101-110.
闫峘宇,刘文洁,李新宇,等. 电弧增材制造焊缝建模及尺寸规律研究[J]. 热加工工艺,2018,47(5):177-181.
YAN H Y,LIU W J,LI X Y,et al. Study on Weld Modeling and Dimension Rules of Wire and Arc Additive Manufacturing[J]. Hot Working Technology,2018,47(5):177-181.
焦坤,赵磊,杜行,等. 基于逆向建模的铝合金薄壁件电弧增材再修复成形研究[J]. 电焊机,2021,51(10):61-65.
JIAO K,ZHAO L,DU X,et al. Research on arc additive manufacturing and repair of thin -wall aluminum alloy based on reverse modeling[J]. Electric Welding Machine,2021,51(10):61-65.
聂文忠,曾嘉艺,郭泰,等. 基于逆向成形的电弧增材制造表面质量评价[J]. 精密成形工程,2022,14(7):92-97.
NIE W Z,ZENG J Y,GUO T,et al. Evaluation on Wire Arc Additive Manufacturing Surface Quality Based on Reverse Molding[J]. Journal of Netshape Forming Engineering,2022,14(7):92-97.
董曼淑,朱晗,张晓超,等. 矿用链轮链窝电弧增材制造路径规划[J]. 焊接,2021(1):51-55+64.
DONG M S,ZHU H,ZHANG X C,et al.Path planning of arc additive manufacturing for mine sprocket chain pocket[J]. Welding & Joining,2021(1):51-55+64.
倪为华,王晓清. 运用Tebis对A面常见缺陷的修复方法[J]. 模具制造,2019,19(07):73-77.
NI W H,WANG X Q. Repair Method of Common Defects on Class AProfile Surface by Tebis[J]. Die-mould Manufacture,2019,19(07):73-77.
李晓泉,初雅杰,杨宗辉. 焊缝金属氧化物夹杂的尺寸及分布辅助外电场控制法[J]. 焊接学报,2013,34(10):5-8+113.
LI X Q,CHU Y J,YANG Z H. Research on controlling method of size and distribution of oxide inclusions in weld metal with auxiliary electric field[J]. Transactions of the China Welding Institution,2013,34(10):5-8+113.
相关作者
相关机构