TIG增材N50不锈钢组织与性能研究
Study on the Microstructure and Properties of TIG Additive Manufacturing N50 Stainless Steel
- 2024年54卷第11期 页码:99-104
纸质出版日期: 2024-11-25
DOI: 10.7512/j.issn.1001-2303.2024.11.13
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-11-25 ,
移动端阅览
王东波,张海燕,王旭,等.TIG增材N50不锈钢组织与性能研究[J].电焊机,2024,54(11):99-104.
WANG Dongbo, ZHANG Haiyan, WANG Xu, et al.Study on the Microstructure and Properties of TIG Additive Manufacturing N50 Stainless Steel[J].Electric Welding Machine, 2024, 54(11): 99-104.
为解决N50制造成本居高不下,且传统减材加工方式的材料利用率低的问题。采用加工速度快、材料利用率高的TIG电弧增材制造技术制备N50不锈钢,并研究不同增材高度下增材体的显微组织、夹杂物分布、显微硬度和77 K力学性能。研究发现,TIG增材技术能制造出完全由奥氏体晶粒组成的N50不锈钢,增材体的77 K屈服强度、抗拉强度及断后伸长率随高度增加而降低,显微硬度也逐渐降低。分析表明,增材体高度的增加影响冷却速度和夹杂物的分布,上层冷却速度降低导致上层枝晶间距较大,且上层夹杂物尺寸和数量均多于下层,这些因素共同影响了材料的低温塑韧性。
To solve the problem of high manufacturing costs and low material utilization rate of traditional subtractive processing methods for N50. This study adopts TIG (Tungsten Inert Gas) arc additive manufacturing technology
which offers fast processing speed and high material utilization
to fabricate N50 stainless steel. It investigates the microstructure
inclusion distribution
microhardness
and mechanical properties at 77 K of the additive body at different heights. The research found that TIG additive technology can produce N50 stainless steel composed entirely of austenite grains. The yield strength
tensile strength
and elongation after fracture at 77 K of the additive body decrease with increasing height
and the microhardness also gradually decreases. Analysis indicates that the increase in the height of the additive body affects the cooling rate and distribution of inclusions. The upper layers experience a slower cooling rate
resulting in larger dendritic arm spacings
and both the size and quantity of inclusions in the upper layers are greater than those in the lower layers. These factors collectively influence the low-temperature toughness and malleability of the material.
电弧增材制造N50不锈钢低温力学性能枝晶间距夹杂物
arc additive manufacturingN50 stainless steelcryogenic mechanical propertiesdendrite spacing
Kass J N,Bell W L,Wang M T,et al. Influence of recrystallization behavior on the mechanical properties of XM-19 stainless steel (22Cr-13Ni-5Mn-2Mo-0.3N)[J]. Metallurgical Trans.,1979,10(6):715-725.
WANG W,JIN J,WU L,et al. Study on the welding properties of modified N50 CICC jacket for future fusion applications[J]. Journal of Materials Research and Technology,2023,27:6094-6103.
Guo W G. Flow stress of nitronic-50 stainless steel over a wide range of strain rates and temperatures[J]. Mechanics of Materials,2006,38(11):1090-1103.
董廷亮. 氮在高氮钢熔炼过程中的行为及氮对不锈钢耐腐蚀性能的影响[D]. 湖北:武汉科技大学,2007.
DONG T L. Behavior of nitrogen during the melting process of high nitrogen steel and the Influence of nitrogen on the corrosion resistance of stainless steel[D]. Hubei:Wuhan University of Science and Technology,2007.
曲扬,杨可,郭博静,等. 不锈钢电弧增材制造成形[J]. 电焊机,2018,48(1):15-18+23.
QU Y,YANG K,GUO B J,et al. Stainless steel arc additive manufacturing forming[J]. Electric Welding Machine,2018,48(1):15-18+23.
王钰,王凯,丁东红,等. 金属熔丝增材制造技术的研究现状与展望[J]. 电焊机,2019,49(1):69-77+123.
WANG Y,WANG K,DING D H,et al. Research status and prospect of metal wire arc additive manufacturing technology[J].Electric Welding Machine,2019,49(1):69-77+123.
Lippold J C,Kotecki D J. Welding Metallurgy and Weldability of Stainless[M]. New York:John Wiley & Sons, Inc.,2005:39-40.
胡汉起. 金属凝固原理[M]. 北京:机械工业出版社,2000.
尹安远,吴素君. 钢中非金属夹杂物的鉴定[J]. 理化检验:物理分册,2007,43(8):5.
YIN A Y,WU S J. Appraisal of the nonmetallic inclusions in steel[J]. Physical Testing and Chemical Analysis(Part A:Physical Testing),2007,43(8):395-398.
王红颖,崔承云,周杰. 工具钢表面激光熔覆Co基合金涂层的组织及性能[J]. 吉林大学学报,2010,40(4):1000-1004.
WANG H Y,CUI C Y,ZHOU J. Organization and properties of laser-melted Co-based alloy coatings on tool steel surfaces[J]. Journal of Jilin University (Science Edition),2010,40(4):1000-1004.
张晓东,董世运,徐滨士,等. 45钢表面激光熔覆Ni35合金涂层的组织及性能[J]. 装甲兵工程学院学报, 2009,23(3):73-76.
ZHANG X D,DONG S Y,XU B S,et al. Organization and properties of laser-melted Ni35 alloy coating on the surface of 45 steel[J]. Journal of Academy of Armored Force Engineering,2009,23(3):73-76.
Xu P,Lin C X,Zhou C Y,et al. Wear and corrosion resistance of laser cladding AISI 304 stainless steel/Al2O3 composite coatings[J]. Surface and Coatings Technology,2014,238(1):9-14.
胡赓祥,蔡珣,戎咏华. 材料科学基础[M]. 上海:上海交通大学出版社,2010:183-185.
相关作者
相关机构