YSZ涂层大气等离子喷涂过程数值模拟研究
Numerical Simulation Study on Atmospheric Plasma Spraying Process of YSZ Coating
- 2024年54卷第11期 页码:82-91
纸质出版日期: 2024-11-25
DOI: 10.7512/j.issn.1001-2303.2024.11.11
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-11-25 ,
移动端阅览
鲁若愚,吴朝峰,王波,等.YSZ涂层大气等离子喷涂过程数值模拟研究[J].电焊机,2024,54(11):82-91.
LU Ruoyu, WU Chaofeng, WANG Bo, et al.Numerical Simulation Study on Atmospheric Plasma Spraying Process of YSZ Coating[J].Electric Welding Machine, 2024, 54(11): 82-91.
针对等离子喷涂工艺过程中因其复杂性和多变性导致的喷涂粉末动态行为难以直接观测的问题,本文利用Ansys软件构建了大气等离子喷涂工艺的有限元模型。模拟计算了喷涂粉末颗粒的温度场和速度场,并深入分析了喷涂距离对粉末颗粒温度和速度的影响。通过对比试验监测数据与有限元模拟结果,验证了模型的准确性。研究结果表明,最佳喷涂距离为90 mm,此时喷涂粉末颗粒的温度和速度均达到了峰值。以上研究为YSZ涂层在大气等离子喷涂工艺中的参数优化及涂层性能提升提供了理论依据与实践参考。
Due to the complexity and variability of the plasma spraying process
the dynamic behaviour of the sprayed powder is difficult to be directly observed. In this paper
a finite element model of the atmospheric plasma spraying process is established using Ansys software
the temperature and velocity fields of the powder particles are simulated and calculated
and the influence of the spraying distance on the temperature and velocity state of the powder particles is deeply analysed. The accuracy of the model was verified by comparing the experimental monitoring data and the finite element simulation results. The results show that the optimum spraying distance is 90 mm
when the temperature and velocity of the sprayed powder particles reach the peak. The above study provides a theoretical basis and practical reference for the optimisation of YSZ coating parameters and the enhancement of coating performance in the atmospheric plasma spraying process.
大气等离子喷涂数值模拟喷涂距离工艺优化
Atmospheric plasma sprayingNumerical simulationSpraying distanceProcess optimization
薛召露,郭洪波,宫声凯,等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报,2018,38(02):10-20.
XUE Z L,GUO H B,GONG S K,et al. New ceramic thermal insulation materials for thermal barrier coatings[J]. Journal of Aeronautical Materials,2018,38(2):10-20.
Liu Q,Huang S,He A.Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines[J]. Journal of Materials Science & Technology,2019,35(12):2814-2823.
Padture N P. Advanced structural ceramics in aerospace propulsion[J]. Nature materials,2016,15(8):804-809.
邓世均. 迎接热喷涂工业的兴起[J]. 材料保护,2000(01):78-82.
DENG S J. Meeting the Rising of Thermal Spraying[J]. Materials Protection,2000(01):78-82.
张蕾,陈洪胜,刘建和,等. 超音速等离子射流中飞行粒子的熔化行为研究[J]. 核技术,2023,46(09):68-78.
ZHANG L,CHEN H S,LIU J H,et al. Melting behavior of in-flight particles in supersonic plasma jets[J]. Nuclear Technology,2023,46(09):68-78.
Dalir E,Moreau C,Dolatabadi A. Three-dimensional modeling of suspension plasma spraying with arc voltage fluctuations[J]. Journal of Thermal Spray Technology,2018,27:1465-1490.
Federer J I,Van Roode M,Price J R. Evaluation of ceramic coatings on silicon carbide[J]. Surface and Coatings Technology,1989,39:71-78.
周前红. 直流电弧等离子体炬的数值模拟[D]. 上海:复旦大学,2009:47-69.
ZHOU Q H. Numerical simulation of direct current arc plasma torch[D]. Shanghai:Fudan University,2009.
Li H P,Chen X. Three-dimensional simulation of a plasma jet with transverse particle and carrier gas injection[J]. Thin Solid Films,2001,390(1-2):175-180.
陈文波,陈伦江,刘川东,等. 直流电弧等离子体炬的数值模拟研究[J]. 真空,2019,56(01):56-58.
CHEN W B,CHEN L J,LIU C D,et al. Numerical simulation of a DC arc thermal plasma torch[J].Vacuum,2019,56(01):56-58.
Li H P,Pfender E,Chen X. Application of Steenbeck's minimum principle for three-dimensional modelling of DC arc plasma torches[J]. Journal of Physics D:Applied Physics,2003,36(9):1084.
Moreau E,Chazelas C,Mariaux G,et al. Modeling the restrike mode operation of a DC plasma spray torch[J]. Journal of Thermal Spray Technology,2006,15:524- 530.
Trelles J P,Pfender E,Heberlein J V R. Modelling of the arc reattachment process in plasma torches[J]. Journal of Physics D:Applied Physics,2007,40(18):5635.
Trelles J P,Heberlein J V R. Simulation results of arc behavior in different plasma spray torches[J]. Journal of Thermal Spray Technology,2006,15:563-569.
Trelles J P,Heberlein J V R,Pfender E. Non-equilibrium modelling of arc plasma torches[J]. Journal of Physics D:Applied Physics,2007,40(19):5937.
Colombo V,Ghedini E,Sanibondi P. Thermodynamic and transport properties in non-equilibrium argon, oxygen and nitrogen thermal plasmas[J]. Progress in Nuclear Energy,2008,50(8):921-933.
胡福胜,魏正英,谭超,等.普通大气等离子喷涂过程的数值分析[J]. 西安交通大学学报,2013,47(9):92-99.
HU F S,WEI Z Y,TAN C,et al. Numerical Analysis on Atmospheric Plasma Spray Process[J]. Journal of Xi’an Jiao tong University,2013,47(9):92-99.
相关作者
相关机构