WC添加对电弧熔覆钛基涂层微观组织及性能的影响
Effect of WC Addition on Microstructure and Properties of Arc Cladding Titanium-based Coatings
- 2024年54卷第11期 页码:66-74
纸质出版日期: 2024-11-25
DOI: 10.7512/j.issn.1001-2303.2024.11.09
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-11-25 ,
移动端阅览
薛添淇,张敏,闫少帅,等.WC添加对电弧熔覆钛基涂层微观组织及性能的影响[J].电焊机,2024,54(11):66-74.
XUE Tianqi, ZHANG Min, YAN Shaoshuai, et al.Effect of WC Addition on Microstructure and Properties of Arc Cladding Titanium-based Coatings[J].Electric Welding Machine, 2024, 54(11): 66-74.
为了提高钛合金的使用寿命,设计了一种Ti-WC系药芯焊丝,并通过TIG电弧熔覆技术在TC4钛板上制备了4种不同WC含量的钛基涂层。通过XRD、SEM、EDS、显微硬度测试、摩擦磨损试验和电化学测试等方法,对涂层的微观组织、力学性能和耐蚀性进行了分析。结果表明,涂层主要由α-Ti、WC、W
2
C和TiC组成,随着WC含量的增加,涂层中硬质相的含量也随之增加,涂层硬度及耐磨性得到了显著提高。在电化学耐蚀性测试中,各涂层均在电解液中发生了明显的钝化现象,耐蚀性随着WC含量的增加呈现先上升后下降的趋势,当WC添加量为12%时耐蚀性最佳。
In order to improve the service life of titanium alloy
a kind of Ti-WC core welding wire is designed in this paper. The four kinds of coatings with different WC content are prepared on TC4 titanium plate by TIG arc cladding technology. The microstructure
mechanical properties and corrosion resistance of the coatings were analyzed by XRD
SEM
EDS
microhardness test
friction and wear test and electrochemical test. The results show that the coating is mainly composed of α-Ti
WC
W2C and TiC. With the increase of WC content
the content of hard phase in the coating also increases
and the hardness and wear resistance of the coating are significantly improved. In the electrochemical corrosion resistance test
each coating has obvious passivation phenomenon in the electrolyte
and the corrosion resistance first increased and then decreased with the increase of WC content. When the WC addition amount was 12%
the corrosion resistance was the best.reasing with the increase of WC
and the corrosion resistance was the best when the amount of WC was 12%.
电弧熔覆药芯焊丝钛基涂层WC硬质相耐磨性
arc claddingflux-cored wireTitanium based coatingWC hard phasewear resistance
张仕林. (α+β)钛合金电子束焊接接头显微组织及力学性能研究[D]. 安徽:中国科学技术大学,2019.
ZHANG S L. Study on microstructure and Mechanical properties of (α+β) titanium alloy electron beam welded joint[D]. Anhui:University of Science and Technology of China,2019.
王兰. 钛合金磨损行为及磨损机理的研究[D]. 江苏:江苏大学,2014.
WANG L. Study on wear behavior and wear mechanism of titanium alloy[D]. Jiangsu:Jiangsu University,2014.
黄陆军,耿林. 网状结构钛基复合材料研究进展[J]. 中国材料进展,2016,35(09):674-685+701.
HUANG L J,GENG L. Research progress of titanium matrix composites with mesh structure[J]. Materials Progress in China,2016,35(09):674-685+701.
黄陆军,耿林. 非连续增强钛基复合材料研究进展[J]. 航空材料学报,2014,34(04):126-138.
HUANG L J,GENG L. Research progress of discontinuous reinforced titanium matrix composites[J]. Journal of Aeronautical Materials,2014,34(04):126-138.
谭启明,隋楠. 颗粒增强钛基复合材料的研究与进展[J]. 新材料产业,2019(01):59-64.
TAN Q M,SUI N. Research and progress of particle reinforced titanium matrix composites[J]. New Materials Industry,2019(01):59-64.
汝娟坚,贺涵. 陶瓷颗粒增强金属基复合材料的制备方法及研究进展[J]. 科技创新与应用,2019(19):116-117.
RU J J,HE H. Preparation methods and research progress of ceramic particle reinforced metal matrix composites[J]. Science and Technology Innovation and Application,2019(19):116-117.
晏琪,陈彪,李金山. 碳纳米材料增强钛基复合材料研究进展[J]. 中国材料进展,2019,38(11):1061-1073.
YAN Q,CHEN B,LI J S. Research progress of titanium matrix composites reinforced by carbon nanomaterials[J]. Advances in Materials in China,2019,38(11):1061-1073.
倪嘉,柴皓,史昆,等. 颗粒增强钛基复合材料的研究进展[J]. 材料导报,2019,33(S2):369-373.
NI J,CHAI H,SHI K,et al. Research progress of particle reinforced titanium matrix composites[J]. Materials Review,2019,33(S2):369-373.
徐江宁. Ti6Al4V合金表面激光熔覆高温抗氧化及耐磨复合涂层试验与分析[D]. 江苏:苏州大学,2018.
XU J N. Test and analysis of high temperature anti-oxidation and wear composite coating on Ti6Al4V Al
loy Surface by laser cladding[D]. Jiangsu:Soochow University,2018.
张喜燕,赵永庆,白晨光. 钛合金及应用[M]. 北京:化学工业出版社,2005:218-231.
崔琳. 硬质WC颗粒增强镍基合金堆焊层的微观组织结构演化与摩擦性能研究[D]. 辽宁:辽宁科技大学,2023.
CUI L. Study on microstructure evolution and tribological property of hard WC particles reinforced nickel-based alloy surfacing layer[D]. Liaoning:Liaoning University of Science and Technology,2023.
刘峰,肖海峰,叶四友. 激光熔覆WC增强镍基复合涂层的组织与性能研究[J]. 特种铸造及有色合金,2023,43(08):1071-1075.
LIU F,XIAO H F,YE S Y. Microstructure and Properties of WC Reinforced Nickel-based Compound Coating by Laser Cladding[J]. Special Casting and non-ferrous Alloys,2023,43(08):1071-1075.
戚继球. 熔铸法制备TiC增强高温钛合金基复合材料组织与高温变形行为[D]. 黑龙江:哈尔滨工业大学,2013.
QI J Q. Microstructure and deformation behavior of TiC reinforced high temperature titanium alloy matrix composites prepared by fusion casting method[D]. Heilongjiang:Harbin Institute of Technology,2013.
Lu W,Zhang D,Zhang X,et al. Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique[J]. Journal of Alloys and Compounds,2001,327(1-2):248-252.
张二林,金云学,曾松岩,等.碳含量对自生TiCp增强钛基复合材料组织的影响[J].材料工程,2000(6):7-12.
ZHANG E L,JIN Y X,ZENG S Y,et al. Effect of Carbon Content on the Microstructure of in situ TiC Particulate Titanium Alloy Matrix Composites[J]. Journal of Materials Engineering,2000(6):7-12.
张云龙. 铜/钢复合结构增材制造界面调控及过渡材料研究[D]. 陕西:西安理工大学,2021.
ZHANG Y L. Research on interface control and transition materials for additive manufacturing of copper/steel composite structures[D]. Shanxi:Xi'an University of Technology,2021.
Vreeling J A,Ocelik V,De Hosson J T M. Ti-6Al-4V strengthened by laser melt injection of WCp particles[J]. Acta Materialia,2002,50(19):4913-4924.
王娟. 表面堆焊与热喷涂技术[M]. 北京:化学工业出版社,2004.
de Assis S L,Wolynec S,Costa I. Corrosion characterization of titanium alloys by electrochemical techniques[J]. Electrochimica Acta,2006,51(8-9):1815-1819.
Stern M,Geary A L. Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves[J]. Journal of the electrochemical society,1957,104(1):56-63.
相关作者
相关机构