基于视觉特征的机车钢结构焊接机器人焊缝跟踪方法研究
Welding Seam Tracking of Locomotive Steel Structure Welding Robot based on Visual Features
- 2024年54卷第9期 页码:69-76
纸质出版日期: 2024-09-25
DOI: 10.7512/j.issn.1001-2303.2024.09.09
移动端阅览
浏览全部资源
扫码关注微信
纸质出版日期: 2024-09-25 ,
移动端阅览
钟凡.基于视觉特征的机车钢结构焊接机器人焊缝跟踪方法研究[J].电焊机,2024,54(9):69-76.
ZHONG Fan.Welding Seam Tracking of Locomotive Steel Structure Welding Robot based on Visual Features[J].Electric Welding Machine, 2024, 54(9): 69-76.
机车钢结构在智能焊接过程中,受到热输入、材料变形等因素的影响,焊缝的实际位置和形状会发生变化,在焊缝跟踪时,当前视觉帧间差方法容易忽略位置信息和焊缝轨迹位置偏差,导致跟踪误差大。对此,提出基于视觉特征的机车钢结构焊接机器人焊缝跟踪方法。选取以“棋盘格&条纹”混合图像作为基础,标定机车钢结构焊接机器人立体视觉位置,对焊接机器人激光条纹的中心线特征进行捕获;通过Roberts算子提取焊缝边缘信息,引入Hough变换确定焊缝中心线,实现焊缝识别,并将焊缝坐标展开转换,将其映射至机车钢结构焊接机器人的基础坐标系,在三维空间中构建焊缝轨迹;基于焊枪当前的位置信息和焊缝轨迹计算位置偏差,通过三次分均匀有理B样条对焊缝轨迹数据进行实时修正,实现机车钢结构焊接机器人焊缝实时跟踪。试验结果表明,所提方法可以有效提升机车钢结构焊接机器人焊缝跟踪精度。
In the process of intelligent welding of locomotive steel structure
affected by heat input
material deformation and other factors
the actual position and shape of the weld will change. When tracking the weld
the current visual frame difference method is easy to ignore the position information and the position deviation of the weld trajectory
resulting in large tracking error. In this regard
a seam tracking method for locomotive steel structure welding robot based on visual features is proposed. Based on the "checkerboard&Stripe" mixed image
the stereo vision position of the locomotive steel structure welding robot is calibrated
and the centerline feature of the laser stripe of the welding robot is captured; The Roberts operator is used to extract the weld edge information
and the Hough transform is introduced to determine the weld centerline to realize the weld identification. The weld coordinates are transformed and mapped to the basic coordinate system of the locomotive steel structure welding robot
and the weld trajectory is constructed in three-dimensional space; Based on the current position information of the welding torch and the calculation of the position deviation of the weld trajectory
the weld trajectory data is corrected in real time by cubic uniform rational B-spline
and the real-time tracking of the weld seam of the locomotive steel structure welding robot is realized. The experimental results show that the proposed method can effectively improve the seam tracking accuracy of the locomotive steel structure welding robot.
视觉特征机车钢结构焊接机器人焊缝跟踪
visual featureslocomotive steel structurewelding robotsweld seam tracking
邓贤东,刘春华,陈晓辉,等. 基于深度学习的焊缝视觉跟踪方法研究[J].现代制造工程,2023(06):124-131.
DENG X D,LIU C H,CHEN X H,et al. Research on weld visual tracking method based on deep learning [J]. Modern Manufacturing Engineering,2023(06):124-131.
杨书娟,蒋毅,俞建峰,等. 激光视觉引导的管道焊缝识别与跟踪系统[J]. 激光与光电子学进展,2022,59(16):245-253.
YANG S J,JIANG Y,YU J F,et al. Laser Visual Guided Pipeline Weld Seam Identification and Tracking System[J]. Laser & Optoelectronics Progress,2022,59(16):245-253.
贾爱亭,洪波,李湘文,等. 基于轨迹在线识别的3D折线焊缝机器人摆动GMAW实时跟踪方法[J]. 机械工程学报,2022,58(14):116-125.
JIA A T,HONG B,LI X W,et al. Real Time Tracking Method of 3D Zigzag Welding Robot Swing GMAW Based on Online Trajectory Detection[J]. Journal of Mechanical Engineering,2022,58(14):116-125.
杨璟,陶永,任帆,等. 一种基于猫群优化算法的焊缝跟踪自调整规则模糊控制方法[J]. 高技术通讯,2022,32(03):219-226.
YANG J,TAO Y,REN F,et al. A Fuzzy control method for welding seam tracking self-adjusting rules based on cat swarm optimization algorithm[J]. Chinese High Technology Letters,2022,32(03):219-226.
周跃龙,陈新度,吴智恒,等. 基于激光视觉的薄板焊缝跟踪方法研究[J]. 机床与液压,2022,50(07):56-61.
ZHOU Y L,CHEN X D,WU Z H,et al. Research on Tracking Method of Thin Plate Weld Seam Based on Laser Vision[J]. Machine Tool & Hydraulics,2022,50(07):56-61.
曹学鹏,张弓,杨根,等. 面向三维复杂焊缝的焊接机器人焊缝跟踪方法[J]. 工程科学学报,2023,45(02):310-317.
CAO X P,ZHANG G,YANG G,et al. Welding seam tracking method of welding robot oriented to three-dimensional complex welding seam[J]. Chinese Journal of Engineering,2023,45(02):310-317.
高佳篷,洪波,贾爱亭,等. 集装箱大梁熔化极气体保护电弧焊的焊缝跟踪系统[J]. 中国机械工程,2023,34(02):238-244+251.
GAO J P,HONG B,JIA A T,et al. Welding Seam Tracking System for Gas Metal Arc Welding of Container Girders[J].China Mechanical Engineering,2023,34(02):238-244+251.
Xu F,Hou Z,Xiao R,et al. A novel welding path generation method for robotic multi-layer multi-pass welding based on weld seam feature point[J]. Measurement,2023,216:112910.
杨华庆,张建护,唐德渝,等. 机器人立体视觉系统标定误差预测补偿技术[J]. 控制工程,2022,29(4):757-762.
YANG H Q,ZHANG J H,TANG D Y,et al. Prediction and Compensation for Calibration Error of Robot Stereo Vision System[J]. Control Engineering of China,2022,29(4):757-762.
李锦鹏,熊显名,曾启林,等. 基于三次B样条小波变换和Franklin矩亚像素级图像边缘检测算法[J]. 红外技术,2022,44(03):255-261.
LI J P,XIONG X M,ZENG Q L,et al. Sub-pixel Level Image Edge Detection Algorithm Based on Cubic B-spline Wavelet Transform and Franklin Moment [J]. Infrared Technology,2022,44(03):255-261.
肖庆追,李捷,陈鹤峰,等. 基于改进Canny算子的图像边缘检测方法[J]. 数学的实践与认识,2022,52(07):77-87.
XIAO Q Z,LI J,CHEN H F,et al. Image Edge Det ection Method Based on Improved Canny Operator[J]. Mathematics in Practice and Theory,2022,52(07):77-87.
相关作者
相关机构