航空发动机关重件极端再造技术及应用
Technology and Application of Extreme Remanufacturing for Aviation Engine
- 2024年 页码:1-7
网络出版日期: 2024-10-14
移动端阅览
浏览全部资源
扫码关注微信
网络出版日期: 2024-10-14 ,
移动端阅览
张振林,胡洁,郭双全等.航空发动机关重件极端再造技术及应用[J].电焊机,DOI:10.7512/j.issn.1001-2303...01.
ZHANG Zhenlin,HU Jie,GUO Shuangquan,et al.Technology and Application of Extreme Remanufacturing for Aviation Engine[J].Electric Welding Machine,
航空发动机关重件工作环境极端恶劣,受高温高压气流、幅值及频率变化较大的交变机械载荷、热交变、振动以及异物击打等作用,极易出现损伤,对新质维修力提出了迫切需求。本文首先论述了新质维修力及其特点,阐明了在工艺约束、材料约束、结构约束、成本约束、周期约束限制下,航空发动机关重修复部件整体性能一致性和寿命的长久性对极端再造提出了迫切需求。其次明晰了新阶段,航空发动机关重件极端再造的原理和特点。最后,基于航空发动机关重件极端再造零件种类、零件故障率以及极端再造技术应用情况,梳理了航空发动机关重件极端再造技术体系及发展现状。为航空发动机关重件修复再制造技术及其发展指明了方向。
The working environment of aviation engines is extremely harsh
subject to high-temperature and high-pressure airflow
alternating mechanical loads with large changes in amplitude and frequency
thermal alternation
vibration
and foreign body strikes
etc.
which are very prone to damage
and put forward an urgent demand for the new repair force. This paper firstly discusses the new repair force and its characteristics
and clarifies the urgent demand for the extreme remanufacturing of the overall performance consistency and longevity of the life of the heavy repair parts of the aviation engines under the limitations of process constraints
material constraints
structural constraints
cost constraints
and cycle constraints. Secondly
the principle and characteristics of extreme remanufacturing of aviation engine are clarified at the new stage. Finally
based on the type of extreme remanufacturing of aviation engine parts
parts failure rate and the application of extreme remanufacturing technology
the extreme remanufacturing for aviation engine technology system and the development status are sorted out. It points out the direction for the extreme remanufacturing technology and its development of aviation engines.
航空发动机维修新质维修力极端再造
aviation enginerepairnew repair forceextreme remanufacturing
侯廷红,周平,何黎明,等. 航空发动机维修技术进展与展望[J]. 航空工程展,2023,14(05):29-34+60.
HOU T H,ZHOU P,HE L M,et al. Progress and prospects in aviation engine maintenance technology[J]. Aviation Engineering Exhibition,2023,14(05):29-34+60.
李鹏涛,左洪福,肖文,等. 航空发动机叶片损伤及其修复技术研究与展望[J]. 航空学报,2024,45(15):140-167.
LI P T,ZUO H F,XIAO W,et al. Research and prospects on damage and repair technology of aviation engine blades[J]. Acta Aeronautica et Astronautica Sinica,2024,45(15):140-167.
Guo D M,Lu. Y F Overview of extreme manufacturing[J]. International Journal of Extreme Manufacturing,2019,020201.
吴朝军,吴晓峰,杨杰. 热喷涂技术在我国航天领域的应用[J]. 金属加工(热加工),2009(18):23-27.
WU C J,WU X F,YANG J. Application of thermal spraying technology in China’s aerospace field[J]. Metal Working (Hot Working),2009(18):23-27.
张学军. 焊接技术在航空部件修复中的应用[J]. 航空维修与工程,2014(05):47-48.
ZHANG X J. Application of Welding Technique in Aircraft Component Maintenance[J]. Aviation Maintenance & Engineering,2014(05):47-48.
Wilson J M,Piya C,Shin Y C,et al. Remanufacturing of turbine blades by laser direct deposition with its energy and environmental impact analysis[J]. Journal of Cleaner Production, 2014,80:170-178.
Learn how LENS systems enable the repair of blisks and other aircraft engine components[EB/OL].(2024-06-01)[2024-10-11]https://optomec.com/blisk-repair/https://optomec.com/blisk-repair/.
蒋其麟,曹凯强,陈龙,等. 涡轮叶片气膜孔的纳秒-飞秒双波段激光加工[J]. 航空制造技术,2021,64(18):53-61.
JIANG Q L,CAO K Q,CHEN L,et al. Nanosecond-femtosecond dual-wavelength laser processing of turbine blade film holes[J]. Aviation Manufacturing Technology,2021,64(18):53-61.
Liu J,Dong S,Jin X,et al. Quality control of large-sized alloy steel parts fabricated by multi-laser selective laser melting (ML-SLM)[J]. Materials & Design,2022,223:111209.
Champagne V,Helfritch D. Critical assessment 11: Structural repairs by cold spray[J]. Materials Science and Technology,2014,31(6):627-634.
樊伟杰,张勇,王安东,等. 基于多机制协同航空自修复涂层关键技术[EB/OL].(2022-05-16)[2024-10-11]http://www.ecorr.org.cn/qita/new1/2022-05-16/184319.htmlhttp://www.ecorr.org.cn/qita/new1/2022-05-16/184319.html.
Tan C,Li R,Su J,et al. Review on field assisted metal additive manufacturing[J]. International Journal of Machine Tools and Manufacture,2023,189:104032.
Gäumann M,Bezençon C,Canalis P,et al. Single-crystal laser deposition of superalloys:processing - microstructure maps[J]. Acta Materialia,2001,49(6):1051-1062.
Basak A,Das S. Epitaxy and microstructure evolution in metal additive manufacturing[J]. Annual Review of Materials Research,2016,46:125-149.
DebRoy T,Wei H L,Zuback J S,et al. Additive manufacturing of metallic components–Process, structure and properties[J]. Progress in Materials Science,2018,92:112-224.
张佩宇,周鑫,李应红. 单晶涡轮叶片高能束修复研究进展[J]. 航空学报,2022,43(4):525610.
ZHANG P Y,ZHOU X,LI Y H. Research progress on high-energy beam repair of single-crystal turbine blades[J]. Acta Aeronautica et Astronautica Sinica,2022,43(4):525610.
高杰.电子束焊接技术的分析与研究[J]. 中国金属通报,2023(12):180-182.
GAO J. Analysis and research on electron beam welding technology[J]. China Metal Bulletin,2023(12):180-182.
康文军,梁养民. 电子束焊接在航空发动机制造中的应用[J]. 航空制造技术,2008,(21):54-56.
KANG W J,LIANG Y M. Application of electron beam welding in aviation engine manufacturing[J]. Aviation Manufacturing Technology,2008(21):54-56.
编辑部网址:http://www.71dhj.comhttp://www.71dhj.com
相关文章
相关作者
相关机构