EBSD Analysis of Microstructure of Inconel625 Alloy Wire
- Vol. 55, Issue 1, Pages: 43-50(2025)
Published: 20 January 2025
DOI: 10.7512/j.issn.1001-2303.2025.01.06
移动端阅览
浏览全部资源
扫码关注微信
Published: 20 January 2025 ,
移动端阅览
苗承鹏,马继国,董生茂,等.Inconel 625合金焊丝微观组织EBSD研究[J].电焊机,2025,55(1):43-50.
MIAO Chengpeng, MA Jiguo, DONG Shengmao, et al.EBSD Analysis of Microstructure of Inconel 625 Alloy Wire[J].Electric Welding Machine, 2025, 55(1): 43-50.
采用EBSD技术对自主研发A焊丝与国内B焊丝、国外C焊丝的成分、择优取向、晶粒尺寸、表面质量以及焊丝内部夹杂物含量进行对比评价焊丝质量。结果表明,通过优化焊丝成分与工艺,A、B、C三种焊丝横纵截面均存在
<
111
>
丝织构和
<
100
>
丝织构,织构密度呈现出A
<math id="M1"><mo><</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559784&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559770&type=
1.60866666
B
<math id="M2"><mo><</mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559784&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559770&type=
1.60866666
C。A焊丝纵截面再结晶晶粒与回复晶粒数之和占总晶粒数的33.45%,B焊丝纵截面再结晶晶粒数+回复晶粒数为9.45%,而C焊丝横截面再结晶晶粒数加回复晶粒数为12.21%,呈现出A
<math id="M3"><mo>></mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559786&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559787&type=
1.60866666
C
<math id="M4"><mo>></mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559786&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559787&type=
1.60866666
B。晶粒尺寸评级为A焊丝G12.0、B焊丝G12.5、C焊丝G13.0,呈现出C
<math id="M5"><mo>></mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559786&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559787&type=
1.60866666
B
<math id="M6"><mo>></mo></math>
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559786&type=
2.28600001
https://html.publish.founderss.cn/rc-pub/api/common/picture?pictureId=73559787&type=
1.60866666
A。A焊丝三维粗糙度为4.30 μm,B焊丝三维粗糙度为4.76 μm,C焊丝三维粗糙度为5.29 μm,表面质量呈现A优于B优于C;A焊丝夹杂物评级为D0.5的视场数为2,B、C焊丝夹杂物评级为D1的视场数均为7,并且存在D1e类粗细夹杂的视场数为1。综合评估A焊丝品质优于B、C焊丝。
In this paper
the preferred orientation
grain size
surface quality and inclusions content of the A wire were compared with the domestic B wire and foreign C wire by EBSD technique. The results show that,by optimizing the composition and process of welding wire
the section of A
B and C wires have <111> and <100> wire texture
and the texture density sorting as A<B<C. The sum of recrystallized grains and the number of recovery grains in the longitudinal section of A wires accounted for 33.45% of the total number of grains
and the number of recrystallized grains in the longitudinal section of B wires plus the number of recovery grains was 9.45%
whereas the number of recrystallized grains and the number of recovery grains in the cross section of C wires was 12.21%
sorting as A>C>B. The grain size grade of A
B
C wire is G12.0
G12.5
G13.0 respectively
sorting as C>B>A. The 3D roughness of A
B
C wire is 4.30 μm
4.76 μm
5.29 μm respectively
and the surface quality of A is the best and B is better than C. A wire with an inclusion rating of D0.5 has a field of view of 2. B
C wire with an inclusions rating of D1 has a field of view of 7
and there is a D1e class of coarse and fine inclusions in one field of view. Comprehensive assessment of the quality of the A wire is better than that of the B
C wire.
Tang X , Wang B , Ji H , et al . Behavior and modeling of microstructure evolution during metadynamic recrystallization of a Niebased superalloy [J]. Mater. Sci. Eng. A , 2016 , 675 : 192 - 203 .
He D G , Lin Y C , Chen M S , et al . Kinetics equations and microstructural evolution during metadynamic recrystallization in a nickele based superalloy with d phase [J]. Alloys Compd. , 2017 , 690 : 971 - 978 .
Zhang H J , Li C , Liu Y C , et al . Precipitation behavior during highetemperature isothermal compressive deformation of Inconel 718 alloy [J]. Mater. Sci. Eng. A , 2016 , 677 : 515 - 521 .
Liu Y C , Guo Q Y , Li C , et al . Recent progress on evolution of precipitates in Inconel 718 superalloy [J]. Acta Metall. , 2016 , 52 : 1259 - 1266 .
倪莉 , 张军 , 王博 , 等 . 镍基高温合金设计的研究进展 [J]. 材料导报 , 2014 , 28 ( 03 ): 1 - 6+16 .
NI L , ZHANG J , WANG B , et al . Progress in Alloy Design of Nickel-based Superalloys [J]. Materials Reports , 2014 , 28 ( 03 ): 1 - 6+16 .
Cortial F , Corrieu J M , Vernot-Loier C . Heat treatments of weld alloy 625:Influence on the microstructure, mechanical properties and corrosion resistance [J]. Metallurgical and Materials Transactions A-Physical Metallurgy And Materials Science , 1995 , 26 ( 05 ): 859 - 870 .
王恒 . ENiCrMo3T0-4药芯焊丝焊缝金属气孔及热裂纹敏感性研究 [D]. 北京 : 北京工业大学 , 2016 .
H. Wang . Study on porosity and hot crack sensitivity of weld metal with ENiCrMo3T0-4 flux-cored wire [D]. Beijing : Beijing University of Technology , 2016 .
GB/T 15620—2008 , 镍及镍合金焊丝 [S]. 北京 : 中国标准出版社 , 2008 .
GB/T 15007—2017 , 耐蚀合金牌号 [S]. 北京 : 中国标准出版社 , 2007 .
袁珊珊 , 刘海定 , 王小岩 , 等 . 国产ERNiCrMo-3镍基合金焊丝热加工成型技术研究 [J]. 电焊机 , 2021 , 51 ( 12 ): 111 - 115 .
YUAN S S , LIU H D , WANG X Y , et al . Research on hot processing moulding technology of domestic ERNiCrMo-3 nickel-based alloy wire [J]. Electric Welding Machine , 2021 , 51 ( 12 ): 111 - 115 .
赵雅萱 , 王少刚 , 庄国祥 , 等 . 高Cr镍基合金焊丝的制备工艺及其组织与性能 [J]. 有色金属加工 , 2017 , 46 ( 5 ): 22 - 28 .
ZHAO Y X , WANG S G , ZHUANG G X , et al . Preparation process of high Cr nickel-based alloy wire and its structure and properties [J]. Nonferrous Metals Processing , 2017 , 46 ( 5 ): 22 - 28 .
毛卫民 , 杨平 , 陈冷 . 材料织构分析原理与检测技术 [M]. 北京 : 冶金工业出版社 , 2008 .
周玉 . 材料分析方法 [M]. 北京 : 机械工业出版社 , 2011 .
Quan G Z , Wang Y , Liu Y Y , et al . Effect of temperatures and strain rates on the average size of grains refined by dynamic recrystallization for aseextruded 42CrMo steel [J]. Mater. Res. , 2013 , 16 : 1092 - 1105 .
Dong D Q , Chen F , Cui Z S . Static recrystallization behavior of SA508eIII steel during hot deformation [J]. J. Iron. Steel Res. Int. , 2016 , 23 : 466 - 474 .
Cai Z W , Chen F X , Ma F J , et al . Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation [J]. J.Alloys Compd. , 2016 , 670 : 55 - 63 .
FeFAowsi M R G , Nakhaie D , Benhangi P H , et al . Modeling the high temperature flow behavior and dynamic recrystallization kinetics of a medium carbon microalloyed steel [J]. J. Mater. Eng. Perform. , 2014 , 23 : 1077 - 1087 .
Momeni A , Kazemi S , Ebrahimi G , et al . Dynamic recrystallization and precipitation in high manganese austenitic stainless steel during hot compression [J]. Int. J. Min. Met. Mater , 2014 , 21 : 36 - 45 .
Wen D X , Lin Y C , Zhou Y . A new dynamic recrystallization kinetics model for a Nb containing Ni-Fe-Cr-base superalloy considering influences of initiald phase [J]. Vacuum , 2017 , 141 : 316 - 327 .
Bobbili R , Madhu V . An investigation into hot deformation characteristics and processing maps of high strength armor steel [J]. J. Mater. Eng. Perform. , 2015 , 24 : 4728 - 4735 .
Jiang H , Dong J X , Zhang M C , et al . A study on the effect of strain rate on the dynamic recrystallization mechanism of alloy 617B [J]. Metall. Mater. Trans.A , 2016 , 47 : 5071 - 5087 .
GB/T 10561—2005 , 钢中非金属夹杂物含量的测定—标准评级图显微检验法 [S].
相关作者
相关机构