Prospects of Additive Manufacturing Technology Application in the Construction of Underwater Titanium Alloy Equipment
- Vol. 55, Issue 1, Pages: 19-27(2025)
Published: 20 January 2025
DOI: 10.7512/j.issn.1001-2303.2025.01.03
移动端阅览
浏览全部资源
扫码关注微信
Published: 20 January 2025 ,
移动端阅览
王晋忠,柴斐,汪卓然,等.增材制造技术在水下钛合金装备建造中的应用现状及展望[J].电焊机,2025,55(1):19-27.
WANG Jinzhong, CHAI Fei, WANG Zhuoran, et al.Prospects of Additive Manufacturing Technology Application in the Construction of Underwater Titanium Alloy Equipment[J].Electric Welding Machine, 2025, 55(1): 19-27.
水下装备是一类可辅助或替代人类在复杂、高危的水下特殊环境中进行作业的军民两用型装备,是海洋资源开发和海洋权益维护的关键工具。近十年来,增材制造技术在航空航天、生物医疗等领域取得了诸多成功应用,但其在水下装备上的应用却鲜有报道。本文从水下钛合金装备的发展趋势出发,分析了增材制造在水下装备建造中的应用空间,从成形尺寸、产品结构和制件成分性能深入分析了增材制造技术的适用性,并以螺旋桨、空心壳体等典型零件为例,展示了其在复杂结构制造上的优势。同时,也指出了增材制造技术在应力腐蚀开裂、大型结构件形性控制、质量评价体系以及材料成本等方面的挑战。未来,通过技术突破和材料创新,例如开发固相增材制造技术,增材制造技术有望克服现有难题,实现高密度、类似锻件的组织结构,为水下装备的高质量、轻量化制造提供强力支持,推动海洋强国建设。
Underwater equipment is a type of military and civilian equipment that can assist or replace humans in operating in complex and high-risk underwater environments, and is a key tool for marine resource development and the maintenance of marine rights and interests. In the past decade, additive manufacturing technology has achieved many successful applications in fields such as aerospace and biomedicine, but its application on underwater equipment has rarely been reported. This paper starts from the development trend of underwater titanium alloy equipment, analyzes the application space of additive manufacturing in the construction of underwater equipment, and delves into the applicability of additive manufacturing technology from the aspects of forming size, product structure, and component properties. Taking propellers and hollow shells as typical examples, it demonstrates its advantages in manufacturing complex structures. At the same time, it points out the challenges of additive manufacturing technology in stress corrosion cracking, shape and property control of large structural parts, quality evaluation systems, and material costs. In the future, through technological breakthroughs and material innovations, such as the development of solid-phase additive manufacturing technology, additive manufacturing technology is expected to overcome existing problems, achieve high-density, and wrought-like tissue structures, provide strong support for high-quality, lightweight manufacturing of underwater equipment, and promote the construction of a maritime power.
Emmelmann C , Sander P , Kranz J , et al . Laser Additive Manufacturing and Bionics:Redefining Lightweight Design [J]. Physics Procedia , 2011 , 12 ( 1 ): 364 - 368 .
周洋 , 孔谅 , 王敏 , 等 . 钛及钛合金焊接接头腐蚀性能研究现状 [J]. 电焊机 , 2018 , 48 ( 7 ): 46 - 50+75 .
ZHOU Y , KONG L , WANG M , et al . Reserach status of corrosion of Ti and Ti alloy welding joints [J]. Electric Welding Machine , 2018 , 48 ( 07 ): 46 - 50+75 .
黄瑞生 , 方乃文 , 武鹏博 , 等 . 厚壁钛合金熔化焊接技术研究现状 [J]. 电焊机 , 2022 , 52 ( 6 ): 10 - 24 .
HUANG R S , FANG N W , WU P B , et al . Research Status of Thick Plate Titanium Alloy Fusion Welding Technology [J]. Electric Welding Machine , 2022 , 52 ( 6 ): 10 - 24 .
PRASAD A V S R , RAMJI K , DATTA G L . An Experimental Study of Wire EDM on Ti-6Al-4V Alloy [J]. Procedia Materials Science , 2014 , 5 : 2567 - 2576 .
GUPTA R K , KUMAR V A , MATHEW C , et al . Strain hardening of Titanium alloy Ti6Al4V sheets with prior heat treatment and cold working [J]. Materials Science &amp ; Engineering A, 2016 , 662 : 537 - 550 .
魏玉顺 , 马青军 , 武鹏博 , 等 . TC4钛合金激光焊接技术研究进展 [J]. 电焊机 , 2023 , 53 ( 8 ): 55 - 66 .
WEI Y S , MA Q J , WU P B , et al . Research Progress in Laser Welding Technology of TC4 Titanium Alloy [J]. Electric Welding Machine , 2023 , 53 ( 8 ): 55 - 66 .
HUANG R , RIDDLE M , GRAZIANO D , et al . Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components [J]. Journal of Cleaner Production , 2016 , 135 : 1559 - 1570 .
HOURMAND M , SARHAN A A D , SAYUTI M , et al . A Comprehensive Review on Machining of Titanium Alloys [J]. Arabian Journal for Science and Engineering , 2021 , 46 ( 8 ): 7087 - 7123 .
JOSHI K , PROMOPPATUM P , QUEK S S , et al . Effect of porosity distribution on the strength and strain-to-failure of Laser-Powder Bed Fusion printed Ti-6Al-4V [J]. Additive Manufacturing , 2023 , 74 : 103738 .
WAINWRIGHT J , WILLIAMS S , DING J . Refinement of Ti-6Al-4V prior-β grain structure in the as-deposited condition via process control during wire-direct energy deposition [J]. Additive Manufacturing , 2023 , 74 : 103712 .
王安普 , 张峰 , 孙兵兵 , 等 . TC4钛合金激光金属沉积力学性能各向异性机理研究 [J]. 电焊机 , 2022 , 52 ( 4 ): 14 - 20 .
WANG A P , ZHANG F , SUN B B , et al . Study on the Mechanisms of Mechanical Property Anisotropy of TC4 Titanium Alloy by Laser Metal Deposition [J]. Electric Welding Machine , 2022 , 52 ( 4 ): 14 - 20 .
HASIB M T , OSTERGAARD H E , LIU Q , et al . Tensile and fatigue crack growth behavior of commercially pure titanium produced by laser powder bed fusion additive manufacturing [J]. Additive Manufacturing , 2021 , 45 : 102027 .
ZHAO X , LI S , ZHANG M , et al . Comparison of the microstructures and mechanical properties of Ti-6Al-4V fabricated by selective laser melting and electron beam melting [J]. Materials &Design , 2016 , 95 ( 4 ): 21 - 31 .
CHOI Y R , SUN S D , LIU Q , et al . Influence of deposition strategy on the microstructure and fatigue properties of laser metal deposited Ti-6Al-4V powder on Ti-6Al-4V substrate [J]. International Journal of Fatigue , 2020 , 130 : 105236 .
BAMBACH M , SIZOVA I , SYDOW B , et al . Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing [J]. Journal of Materials Processing Technology , 2020 , 282 : 116689 .
VEEMAN D , AJITH J , FAHMIDHA A F Y , et al . Wire Arc Additive Manufacturing (WAAM) process of nickel based superalloys–A review [J]. Materials Today:Proceedings , 2020 , 21 : 920 - 925 .
LIU Z , ZHAO D , WANG P , et al . Additive manufacturing of metals: Microstructure evolution and multistage control [J]. Journal of Materials Science & Technology , 2022 , 100 : 224 - 236 .
ZHUO Y , YANG C , FAN C , et al . Grain morphology evolution mechanism of titanium alloy by the combination of pulsed arc and solution element during wire arc additive manufacturing [J]. Journal of Alloys and Compounds , 2021 , 888 : 161641 .
WANG X , ZHOU C , LUO M , et al . Fused plus wire arc additive manufacturing materials and energy saving in variable-width thin-walled [J]. Journal of Cleaner Production , 2022 , 373 : 133765 .
LI Y , LI Y , ZHU Y , et al . Hybrid manufacturing by 3D printing: A facile route to fabricate high-performance complex parts of low-fluidity high-entropy alloys [J]. Journal of Physics:Conference Series , 2022 , 2383 : 012035 .
HAMANAKA H , DOI H , YONEYAMA T , et al . Dental Casting of Titanium and Ni-Ti Alloys by a New Casting Machine [J]. Journal of Dental Research , 1989 , 68 ( 11 ): 1529 .
全球首个 3 D打印船舶螺旋桨WAAMpeller正式下线 [J]. 海运情报 , 2018 ( 2 ): 34 .
Breddermann K , Drescher P , Polzin C , et al . Printed pressure housings for underwater applications [J]. Ocean Engineering , 2016 , 113 : 57 - 63 .
BLAKEY-MILNER B , GRADL P , SNEDDEN G , et al . Metal additive manufacturing in aerospace:A review [J]. Materials &Design , 2021 , 209 : 110008 .
DAI N , ZHANG L C , ZHANG J , et al . Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution [J]. Corrosion Science , 2016 , 102 : 484 - 489 .
SUN Q D , SUN J , GUO K , et al . Influences of processing parameters and heat treatment on microstructure and mechanical behavior of Ti-6Al-4V fabricated using selective laser melting [J]. Advances in Manufacturing , 2022 , 10 ( 4 ): 520 - 540 .
HRABE N , QUINN T . Effects of processing on microstructure and mechanical properties of a titanium alloy (Ti-6Al-4V) fabricated using electron beam melting (EBM),part 1:Distance from build plate and part size [J]. Materials Science &amp ;Engineering A, 2013 , 573 ( 6 ): 271 - 277 .
Xie Y , Gao M , Wang F D , et al . Anisotropy of fatigue crack growth in wire arc additive manufactured Ti-6Al-4V [J]. Materials Science and Engineering:A , 2018 , 709 : 265 - 269 .
RUBBERT R . Customized dental prosthesis for periodontal or osseointegration and related systems and methods : US8602780 [P].
CHOWDHURY S , ARUNACHALAM N . Surface functionalization of additively manufactured titanium alloy for orthopaedic implant applications [J]. Journal of Manufacturing Processes , 2023 , 102 : 387 - 405 .
HAO Y L , LI S J , YANG R . Biomedical titanium alloys and their additive manufacturing [J]. Rare Metals , 2016 , 35 ( 09 ): 661 - 671 .
PASANG T , BUDIMAN A S , WANG J C , et al . Additive manufacturing of titanium alloys-Enabling re-manufacturing of aerospace and biomedical components [J]. Microelectronic Engineering , 2023 , 270 : 111935 .
WARYOBA D R , KEIST J S , RANGER C , et al . Impact of hot isostatic pressing on the mechanical and microstructural properties of additively manufactured Ti-6Al-4V fabricated using directed energy deposition [J]. Materials Science and Engineering A , 2018 , 734 : 310323 .
DEBROY T , WEI H L , ZUBACK J S , et al . Additive manufacturing of metallic components-Process,structure and properties [J]. Progress in Materials Science , 2018 , 92 : 112 - 224 .
PAZHANIVEL B , SATHIYA P , MUTHURAMAN K , et al . Influence of NaCl environment on stress corrosion cracking of additive manufactured Ti-6Al-4V alloy [J]. Engineering Failure Analysis , 2021 , 127 : 105515 .
ZHOU X , XU D , GENG S , et al . Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition [J]. Materials Characterization , 2021 , 179 : 111302 .
LEUDERS S , THOENE M , RIEMER A , et al . On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:Fatigue resistance and crack growth performance [J]. International Journal of Fatigue , 2013 , 48 ( 3 ): 300 - 307 .
KASPEROVICH G , HAUSMANN J . Improvement of fatigue resistance and ductility of TiAl6V4 processed by selective laser melting [J]. Journal of Materials Processing Tech , 2015 , 220 : 202 - 214 .
Körner C . Additive manufacturing of metallic compo nents by selective electron beam melting—a review [J]. International Materials Reviews , 2016 , 61 ( 5 ), 361 - 377 .
HRABE N , GNAEUPEL-HEROLD T , QUINN T . Fatigue properties of a titanium alloy (Ti-6Al-4V) fabricated via electron beam melting (EBM):Effects of internal defects and residual stress [J]. International Journal of Fatigue , 2017 , 94 ( 2 ): 202 - 210 .
QIU C L , ADKINS N J , ATTALLAH M M . Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti-6Al-4V [J]. Materials Science and Engineering:A , 2013 , 578 : 230 - 239 .
GALARRAGA H , LADOS D A , DEHOFF R R , et al . Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) [J]. Additive Manufacturing , 2016 , 10 : 47 - 57 .
LIU R , CUI Y , LIU L , et al . A primary study of the effect of hydrostatic pressure on stress corrosion cracking of Ti-6Al-4V alloy in 3.5% NaCl solution [J]. Corrosion Science , 2020 , 165 : 108402 .
LEON A , KATARIVAS LEVY G , RON T , et al . The effect of strain rate on stress corrosion performance of Ti6Al4V alloy produced by additive manufacturing process [J]. Journal of Materials Research and Technology , 2020 , 9 ( 3 ): 4097 - 4105 .
相关文章
相关作者
相关机构