Research and Application of Intelligent Welding Technology for Ship Components Based on 3D VisionTitle
- Vol. 54, Issue 12, Pages: 35-41(2024)
Published: 25 December 2024
DOI: 10.7512/j.issn.1001-2303.2024.12.06
移动端阅览
浏览全部资源
扫码关注微信
Published: 25 December 2024 ,
移动端阅览
许曦,张兆彪,李俊渊,等.基于3D视觉的船体构件智能焊接研究及应用[J].电焊机,2024,54(12):35-41.
XU Xi, ZHANG Zhaobiao, LI Junyuan, et al.Research and Application of Intelligent Welding Technology for Ship Components Based on 3D VisionTitle[J].Electric Welding Machine, 2024, 54(12): 35-41.
为解决船体结构件组立板人工焊接精度低、劳动强度大、效率低等问题,提出了一种基于线激光传感器与结构光传感器结合的点云采集方法。该方法通过3D视觉传感器和大范围线激光传感器采集多模态点云,提取复杂焊接-加工轨迹,开发了免示教智能焊接机器人工作站。通过3D视觉引导焊接机器人定位识别焊缝信息,生成可执行的焊接轨迹,并结合先验焊接工艺进行焊接,实现小批量多种类结构复杂船舶结构件的高效、稳定与灵活的智能化焊接及焊缝加工。试验结果表明,该系统能够有效提高焊接精度和效率,减少人工干预,满足船舶制造等领域大型复杂结构焊接的需求。研究还针对3D视觉算法在处理复杂异形曲面工件焊缝点云提取不准确、焊缝识别偏位等问题,采用了基于轮廓与焊缝点比对的新算法,优化了焊接机器人焊缝识别和特征提取算法。通过自主研发视觉硬件集成等方面的技术突破,推动船舶结构及焊接机器人产品向高端化、智能化发展。
To address the issues of low precision
high labor intensity
and low efficiency in manual welding of ship hull structural components
a point cloud acquisition method based on line laser sensors combined with structured light sensors is proposed. This method collects multimodal point clouds through 3D vision sensors and large-range line laser sensors
extracts complex welding-machining trajectories
and develops an unmanned intelligent welding robot workstation. The 3D vision guides the welding robot to locate and identify weld seam information
generates executable welding trajectories
and combines prior welding processes for welding
achieving efficient
stable
and flexible intelligent welding and weld processing for small batches of various types of complex ship structural components. Experimental results show that this system can effectively improve welding accuracy and efficiency
reduce manual intervention
and meet the needs of large-scale complex structure welding in fields such as ship manufacturing. The study also addresses issues such as inaccurate extraction of weld seam point clouds and offset recognition of weld seams on complex irregular curved workpieces by 3D vision algorithms
adopting a new algorithm based on contour and weld seam point comparison
optimizing the welding robot's weld seam recognition and feature extraction algorithms. Through technological breakthroughs in independently developed visual hardware integration and other aspects
it promotes the development of ship structures and welding robot products towards high-end and intelligence.
线激光传感器结构光传感器3D视觉算法特征提取
line laser sensorstructured light sensor3D vision algorithmweld feature extraction
王田苗,陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报,2014,50(9):1-13.
WANG T M,TAO Y. Research status and industrialization development strategy of Chinese industrial robot[J]. Journal of Mechanical Engineering,2014,50(9):1-13.
Ma Y,Fan J,Zhao S,et al. From Model to Reality: A Robust Framework for Automatic Generation of Welding Paths[J]. IEEE Transactions on Industrial Electronics,PP[2024-08-06].DOI:10.1109/TIE.2024.3395792http://dx.doi.org/10.1109/TIE.2024.3395792.
Yang L,Li E, Long T,et al. A Novel 3-D Path Extraction Method for Arc Welding Robot Based on Stereo Structured Light Sensor[J]. IEEE Sensors Journal,2019,19(2):763-773.
Takubo T,Miyake E,Ueno A,et al. Welding Line Detection Using Point Clouds from Optimal Shooting Position[J]. Journal of Robotics and Mechatronics,2023,35(2):492-500.
Yan Z H,Hu F T,Fang J,et al. Multi-line laser structured light fast visual positioning system with assist of TOF and CAD[J]. Optik,2022,269:169923.
朱昱颖,孙宏伟,朱加雷,等. 船舶中小组立焊接机器人的发展与应用现状[J]. 船舶工程,2022,44(01):104-111.
ZHU Y Y,SUN H W,ZHU J L,et al. Development and Application Status of Small and Medium Sized Assembly Welding Robot in Ship[J]. Ship Engineering,2022,44(01):104-111.
何开平,陈雷,梁剑明,等. 船体小组立机器人焊接三维扫描识别系统设计[J]. 造船技术,2023,51(5):74-79.
HE K P,CHEN L,LIANG J M,et al. Design of 3D Scanning Recognition System for Hull Sub-Assembly Robot Welding[J]. Marine Technology,2023,51(5):74-79.
赵超奇,习俊通. 船舶小组立焊接工位特征提取和检测[J]. 组合机床与自动化加工技术,2021(8):76-80.
ZHAO C Q,XI J T. Feature Extraction and Detection of Ship Small Assembly in Welding Position[J]. Modular Machine Tool & Automatic Manufacturing Technique,2021(8):76-80.
石玮,周坤,刘福海,等. 基于3D视觉与深度学习的焊接钢管端部引熄弧板切割点空间定位方法[J]. 电焊机,2024,54(4):36-42.
SHI W,ZHOU K,LIU F H,et al. Spatial Positioning Method for Cutting Points of Tab Plate at the End of Welded Steel Pipes based on 3D Vision and Deep Learning[J]. Electric Welding Machine,2024,54(4):36-42.
Ahmed S M ,Tan Y Z,Chew C M,et al. Edge and Corner Detection for Unorganized 3D Point Clouds with Application to Robotic Welding[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),IEEE,2018.
吴燕雄,李峰,刘芳,等. 平滑度欧式聚类算法分割点云数据[J]. 测控技术,2016,35(3):36-38.
WU Y X,LI F,LIU F,et al. Point Cloud Segmentation Using Euclidean Cluster Extraction Algorithm With the Smoothness[J]. Measurement & Control Technology,2016,35(3):36-38.
李希,韩燮,熊风光. 基于RANSAC和TLS的点云平面拟合[J].计算机工程与设计,2017(1):123-126.
LI X,HAN X,XIONG F G,et al. Plane fitting of point clouds based on RANSAC and TLS[J]. Computer Engineering and Design,2017(1):123-126.
Furferi R,Governi L,Palai M,et al. From unordered point cloud to weighted B-spline: a novel PCA-based method[C]//World Scientific and Engineering Academy and Society (WSEAS),2011.
吴月玉,张弓,林群煦,等. 机器人TIG焊接的焊缝形貌遗传神经网络预测[J]. 制造业自动化,2022(07):86-90.
WU Y Y,ZHANG G,LIN Q X,et al. Weld morphology prediction based on genetic neural network for robot TIG welding[J]. Manufacturing Automation,2022(07):86-90.
陈华斌,孔萌,吕娜,等. 视觉传感技术在机器人智能化焊接中的研究现状[J]. 电焊机,2017,47(3):1-16.
CHENG H B,KONG M,LV N,et al. Status and development of vision sensors on intelligentized robotic welding technologies[J]. Electric Welding Machine,2017,47(3):1-16.
陈善本,吕娜. 焊接智能化与智能化焊接机器人技术研究进展[J]. 电焊机,2013,43(5):28-36.
CHENG S B,LV N. Research evolution on intelligentized robotic welding technologies[J]. Electric Welding Machine,2013,43(5):28-36.
Edelsbrunner H,Mücke E P. Three-dimensional alpha shapes[J]. ACM Transactions on Graphics,1994,13(1):43-72.
相关文章
相关作者
相关机构