Microstructure and Strength-Toughness of Pulsed Plasma Filament-powder Feeding Cladding WC/Ti Layer on TC4
- Vol. 54, Issue 11, Pages: 25-32(2024)
Published: 25 November 2024
DOI: 10.7512/j.issn.1001-2303.2024.11.04
移动端阅览
浏览全部资源
扫码关注微信
Published: 25 November 2024 ,
移动端阅览
杜航,徐睦忠,姜忠礼,等.TC4表面脉冲等离子填丝-送粉熔覆WC/Ti组织及强韧性研究[J].电焊机,2024,54(11):25-32.
DU Hang, XU Muzhong, JIANG Zhongli, et al.Microstructure and Strength-Toughness of Pulsed Plasma Filament-powder Feeding Cladding WC/Ti Layer on TC4[J].Electric Welding Machine, 2024, 54(11): 25-32.
为提升全钛部件表面耐磨及耐冲击性能,以WC颗粒和TC4焊丝作为熔覆材料,采用脉冲等离子填丝-送粉熔覆技术在TC4钛合金表面制备WC/Ti复合层。通过试验获得其中最优WC/Ti的比例,并研究其对熔覆层硬度及强韧性的影响,分析了WC/Ti熔覆层金相组织形貌、显微硬度、冲击韧性、熔覆层与基材结合强度。试验结果表明,通过优化工艺参数,获得表面呈现亮黑色、内部无冶金缺陷的WC/Ti熔覆层,熔覆层主要由 WC、TiC、W
2
C等相组成,在WC颗粒周围产生了以TiC相为主的强化组织。当送丝速率为1.4 m/min,送粉速率为18 g/min时,熔覆层表面硬度达到51.9 HRC,是TC4基材的1.5倍以上。冲击韧性测试结果表明,熔覆层在室温下具有一定的抗冲击性能,侧向冲击吸收功平均值为10.6 J。熔覆层与基材的结合强度达到616.03 MPa,远超工程指标450 MPa。 脉冲等离子熔覆技术可以有效制备WC/Ti复合层,提升TC4钛合金表面的耐磨性和冲击韧性。
To enhance the wear and impact resistance of titanium components
WC particles and TC4 welding wire were used as cladding materials. Pulse plasma wire-powder claddi
ng technology was employed to prepare a WC/Ti composite layer on the surface of TC4 titanium alloy. The optimal ratio of WC/Ti was determined through experiments
and its effects on the hardness and toughness of the cladding layer were studied. The microstructure
microhardness
impact toughness
and bonding strength between the cladding layer and substrate were analyzed. The results showed that by optimizing process parameters
a WC/Ti cladding layer with a bright black surface and no metallurgical defects inside was obtained. The cladding layer mainly consists of phases such as WC
TiC
W
2
C
etc.
with a strengthened structure primarily composed of TiC phase around the WC particles. When the wire feed rate is 1.4 m/min and the powder feed rate is 18 g/min
the surface hardness of the cladding layer reaches 51.9 HRC
which is more than 1.5 times that of the TC4 substrate. The impact toughness test results indicate that the cladding layer has certain impact resistance at room temperature
with an average lateral impact absorption work of 10.6 J. The bonding strength between the cladding layer and the substrate reaches 616.03 MPa
far exceeding the engineering index of 450 MPa. Pulse plasma cladding technology can effectively prepare WC/Ti composite layers
enhancing the wear and impact resistance of TC4 titanium alloy surfaces.
脉冲等离子熔覆WC/Ti熔覆层显微组织冲击韧性结合强度
pulse plasma claddingWC/Ti cladding layermicrostructureimpact toughnessbonding strength
戈晓岚,仲奕颖,许晓静,等. TC4钛合金表面激光合金化Ti-Al-Nb涂层的研究[J]. 稀有金属材料与工程,2017,46(08):2266-2270.
GE X L,Zhong Y Y,Xu X J,et al. Study on Laser alloying Ti-Al-Nb coating on the Surface of TC4 titanium alloy[J]. Rare Metal Materials and Engineering,2017,46(08):2266-2270.
ZHANG K M,ZOU J X,LI J,et al. Surface modification of TC4 Ti alloy by laser cladding with TiC+Ti powders[J]. Transactions of Nonferrous Metals Society of China,2010,20(11):2192-2197.
许海鹰,张伟,范恺,等. 电子束高频扫描对TC4钛合金组织性能影响的研究(英文)[J]. 稀有金属材料与工程,2017,46(06):1457-1462.
XX H Y,ZHANG W,FAN K,et al. Effect of electron beam high frequency Scanning on microstructure and Properties of TC4 titanium alloy[J]. Rare Metal Materials and Engineering,2017,46(06):1457-1462.
程晨. TC4钛合金表面等离子熔覆Ni基复合涂层组织研究[D]. 贵州:贵州大学,2018.
CHENG C. Study on microstructure of Ni base composite coating on TC4 titanium alloy Surface by plasma cladding[D]. Guizhou:Guizhou University,2018.
刘建弟,张述泉,王华明. 激光熔覆WC颗粒增强复合涂层的组织及耐磨性[J]. 中国有色金属学报,2012,22(09):2600-2607.
LIU J D,ZHANG S Q,WANG H M. Microstructure and wear resistance of laser cladding WC particle reinforced composite coating[J]. The Chinese Journal of Nonferrous Metals,2012,22(09):2600-2607.
张敬国,刘金炎,蒋显亮. 碳化钨/钴热喷涂粉末和涂层的研究进展[J].功能材料,2005(03):332-334+339.
ZHANG J G,LIU J Y,JIANG X L. Research progress of tungsten carbide/cobalt thermal spraying powder and coating[J]. Functional Materials,2005(03):332-334+339.
张新杰. 等离子熔覆耐磨减摩Ni基复合涂层研究[D]. 山东:山东科技大学,2018.
ZHANG X J. Research on wear resistant anti-friction Ni base composite coating by plasma cladding[D]. Shandong:Shandong University of Science and Technology,2018.
张全利. 碳化物材料超精密磨削加工表面生成及损伤机理研究[D]. 黑龙江:哈尔滨工业大学,2017.
ZHANG Q L. Study on surface formation and damage mechanism of carbide materials in ultra-precision grinding[D]. Heilongjiang:Harbin Institute of Technology,2017.
Upadhyaya G S. Cemented tungsten carbides:production,properties and testing[M]. William Andrew,1998.
Yuan Y L,Li Z G. Microstructure and Dry Sliding Wear Behavior of Fe-Based (Cr,Fe)7C3 Composite Coating Fabricated by PTA Welding Process[J]. Journal of Materials Engineering and Performance,2013,22(11):3439-3449.
Lou D,Hellman J,Luhulima D,et al. Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites[J]. Materials Science & Engineering A,2003,340(1):155-162.
李福泉,高振增,李俐群,等. TC4表面丝粉同步激光熔覆制备复合材料层的微观组织和性能[J]. 稀有金属材料与工程,2017,46(01):177-182.
LI F Q,GAO Z Z,LI L Q,et al. Microstructure and properties of composite layer prepared by TC4 Surface silk powder synchronous laser cladding[J]. Rare Metal Materials and Engineering,2017,46(01):177-182.
崔琳. 硬质WC颗粒增强镍基合金堆焊层的微观组织结构演化与摩擦性能研究[D]. 辽宁:辽宁科技大学,2023.
CUI L. Study on microstructure evolution and friction properties of Hard WC particle reinforced Nickel-based alloy surfacing layer[D]. Liaoning:Liaoning university of science and technology,2023.
江龙威,师文庆,林一鸣,等. 添加CeO2对激光熔覆Ni/WC基熔覆层的性能提升研究[J/OL]. 激光与光电子学进展,1-15[2024-09-27].http://kns.cnki.net/kcms/detail/31.1690.TN.20240919.0840.006.htmlhttp://kns.cnki.net/kcms/detail/31.1690.TN.20240919.0840.006.html.
JIANG L W,SHI W Q,LIN Y M,et al. Study on performance improvement of Ni/WC-based laser cladding by adding CeO2[J/OL]. Advances in Laser and Optoelectronics,1-15[2024-09-27].http://kns.cnki.net/kcms/detail/31.1690.TN.20240919.0840.006.htmlhttp://kns.cnki.net/kcms/detail/31.1690.TN.20240919.0840.006.html.
王光,王洪福,赵文,等. Ni60-Cr3C2-WC/TiC等离子堆焊层耐磨性能的研究[J]. 粉末冶金工业,2019,29(06):23-27.
WANG G,WANG H F,ZHAO W,et al. Study on wear resistance of NI60-Cr3C2-WC/TiC plasma surfacing layer[J]. Powder Metallurgy Industry,2019,29(06):23-27.
张松,张春华,刘常升,等. 铝合金表面激光熔覆NiCrBSi的空泡腐蚀性能[J]. 稀有金属材料与工程, 2002(02):99-102.
ZHANG S,ZHANG C H,LIU C S,et al. Cavitation corrosion properties of laser cladding NiCrBSi on Aluminum Alloy Surface[J]. Rare Metal Materials and Engineering,2002(02):99-102.
余鹏程,刘秀波,陆小龙,等. Ti6Al4V合金激光熔覆复合涂层的摩擦学和高温抗氧化性能研究[J]. 中国激光,2015,42(10):89-96.
YU P C,LIU X B,LU X L,et al. Tribology and high temperature oxidation Resistance of laser cladding composite coating of Ti6Al4V alloy[J]. Chinese Journal of Lasers,2015,42(10):89-96.
Liu X,Lei W,Li J,et al. Laser cladding of high-entropy alloy on H13 steel[J]. Rare Metals,2014,33(06):727-730.
罗军明,吴小红,徐吉林. TiC含量对微波烧结TiC/TC4复合材料组织和性能的影响[J]. 稀有金属材料与工程,2017,46(11):3416-3421.
LUO J M,WU X H,XU J L. Effect of TiC content on microstructure and properties of microwave-sintered TiC/TC4 composites[J]. Rare Metal Materials and Engineering,2017,46(11):3416-3421.
相关文章
相关作者
相关机构